Answer:
For gases such as hydrogen, oxygen, nitrogen, helium, or neon, deviations from the ideal gas law are less than 0.1 percent at room temperature and atmospheric pressure. Other gases, such as carbon dioxide or ammonia, have stronger intermolecular forces and consequently greater deviation from ideality.
Explanation:
1) The forward reaction is N2 (g) + O2 (g) → 2NO
(that reaction requires special contitions because at normal pressures and temperatures N2 and O2 do not react to form another compound.
2) The equiblibrium equation is
N2 (g) + O2 (g) ⇄ 2NO
3) Then, the reverse reaction is
2NO → N2(g) + O2(g)
Answer: 2NO → N2(g) + O2(g)
A general equation for a combustion reaction would be expressed as follows:
CxHy + (x+y/2)O2 = xCO2 + y/2H2O
Propane would obviously would only have carbon and hydrogen in its structure. Assuming a complete combustion, all of the carbon atoms would go to carbon dioxide and all of the hydrogen atoms to water. To determine the empirical, we determine the number of carbon and hydrogen atoms present.
moles C = 2.461 g CO2 ( 1 mol / 44.01 g ) ( 1 mol C / 1 mol CO2 ) = 0.06 mol C
moles H = 1.442 g H2O ( 1 mol / 18.02 g ) ( 2 mol H / 1 mol H ) = 0.16 mol H
Then, we divide the smallest amount to the each mole of the atoms. We do as follows:
C = 0.06 / 0.06 = 1
H = 0.16 / 0.06 = 2.67
Then we multiply a number in order to obtain a whole number ratio between the atoms.
1 CH2.67
2 C2H5.34
3 C3H8 <-------- empirical formula
a is the answer because all of the other answers are wrtong
You can make 10 because that is the most N2 you have. The first one that runs out limits further molecules to be made