Answer is: concentration ammonia is higher than concentration of ammonium ion.
Chemical reaction of ammonia in water: NH₃ + H₂O → NH₄⁺ + OH⁻.
Kb(NH₃) = 1,8·10⁻⁵.
c₀(NH₃) = 0,8 mol/L.
c(NH₄⁺) = c(OH⁻) = x.
c(NH₃) = 0,8 mol/L - x.
Kb = c(NH₄⁺) · c(OH⁻) / c(NH₃).
0,000018 = x² / 0,8 mol/L - x.
solve quadratic equation: x = c(NH₄⁺) = 3,79·10⁻³ mol/L.
(a) In this section, give your answers to three decimal places.
(i)
Calculate the mass of carbon present in 0.352 g of CO
2
.
Use this value to calculate the amount, in moles, of carbon atoms present in 0.240 g
of
A
.
(ii)
Calculate the mass of hydrogen present in 0.144 g of H
2
O.
Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g
of
A
.
(iii)
Use your answers to calculate the mass of oxygen present in 0.240 g of
A
Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g
of
A
(b)
Use your answers to
(a)
to calculate the empirical formula of
A
thank you
hope it helpsss
First we need to find the number of moles that 43.9g of gallium metal is. We can do this by finding the molar weight of gallium and cross-multiplying to cancel out units:

So we are dealing with 0.63 moles of gallium metal.
We can take from the balanced equation that 4 moles of gallium metal will react completely with 3 moles of oxygen gas. We can take this ratio and make a proportion to find the amount of oxygen gas, in moles, that will react completely with 0.63 moles of gallium metal:

Cross multiply and solve for x:


So now we know that 0.47 moles of oxygen gas will react with 43.9g of gallium metal.