Answer:
972.3 Torr
Explanation:
P2=P1V1/V2
You can check this by knowing that P and V at constant T have an an inverse relationship. Hence, this is correct.
Answer:
Difference between Vapor and Gas
Usually, a vapour phase consists of a phase with two different substances at room temperature, whereas a gas phase consists of a single substance at a defined thermodynamic range, at room temperature
Explanation:
Answer:
OH−(aq), and H+(aq)
Explanation:
Redox reactions may occur in acidic or basic environments. Usually, if a reaction occurs in an acidic environment, hydrogen ions are shown as being part of the reaction system. For instance, in the reduction of the permanganate ion;
MnO4^-(aq) + 8H^+(aq) +5e-------> Mn^2+(aq) + 4H2O(l)
The appearance of hydrogen ion in the reaction equation implies that the process takes place under acidic reaction conditions.
For reactions that take place under basic conditions, the hydroxide ion is part of the reaction equation.
Hence hydrogen ion and hydroxide ion are included in redox reaction half equations depending on the conditions of the reaction whether acidic or basic.
Answer:
<u><em>Structure:</em></u>
<em>Differences- </em>A polymer is a collection of a large number of molecules whereas a monomer is a single molecule.
A monomer is a single molecule, which has the ability to chemically bond with other monomers in a long chain. A polymer is a chain that is made when monomers bind with other monomers.
<em>Similarities-</em> They are both molecules
<u><em>Properties:</em></u>
<em> Differences- </em>Monomers have polyfunctionality, which is the capacity to form chemical bonds to at least two other monomer molecules. Polymers are chemically unreactive, solids at room temperature, malleable, tough, and are electrical insulators.
<em>Similarities- </em>They both makeup larger forms of matter.
<u><em>Intermolecular Forces</em></u>
<em>Differences: </em>Polymers are held together by covalent bonds, hydrogen bonds, and dispersion bonds. Monomers are <u><em>only</em></u> held together by hydrogen bonds.
<em>Similarities: </em>They can both be bonded together by hydrogen bonds.
Answer:
En total son 8 modelos, en la explicación los nombraremos por orden de antigüedad.
Explanation:
Modelo atómico de Demócrito (450 a.C.)
Modelo atómico de Dalton (1803 d.C.)
Modelo atómico de Lewis (1902 d.C.)
Modelo atómico de Thomson (1904 d.C.)
Modelo atómico de Rutherford (1911 d.C.)
Modelo atómico de Bohr (1913 d.C.)
Modelo atómico de Sommerfeld (1916 d.C.)
Modelo atómico de Schrödinger (1926 d.C.)