A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
Answer:
I think its B
Explanation:
because "This means that when you rubbed the plastic comb along your hair, your hair resisted the movement of the comb and slowed it down. The friction between two surfaces can cause electrons to be transferred from one surface to the other."
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
Answer:
At 81. 52 Deg C its resistance will be 0.31 Ω.
Explanation:
The resistance of wire =
Where
=Resistance of wire at Temperature T
= Resistivity at temperature T ![=\rho_0 \ [1 \ + \alpha\ (T-T_0\ )]](https://tex.z-dn.net/?f=%3D%5Crho_0%20%5C%20%5B1%20%5C%20%2B%20%5Calpha%5C%20%28T-T_0%5C%20%29%5D)
Where 
l=Length of the wire
& A = Area of cross section of wire
For long and thin wire the resistance & resistivity relation will be as follows

![\frac{0.25}{0.31}=\frac{1}{[1+\alpha(T-20)]}](https://tex.z-dn.net/?f=%5Cfrac%7B0.25%7D%7B0.31%7D%3D%5Cfrac%7B1%7D%7B%5B1%2B%5Calpha%28T-20%29%5D%7D)



T = 81.52 Deg C