Answer:
0.0327 m
Explanation:
m = 2 kg
ω = 24 rad/s
A = 0.040 m
Let at position y, the potential energy is twice the kinetic energy.
The potential energy is given by
U = 1/2 m x ω² x y²
The kinetic energy is given by
K = 1/2 m x ω² x (A² - y²)
Equate both the energies as according to the question
1/2 m x ω² x y² = 2 x 1/2 m x ω² x (A² - y²)
y² = 2 A² - 2 y²
3y² = 2A²
y² = 2/3 A²
y = 0.82 A = 0.82 x 0.040 = 0.0327 m
Answer: 0.192 N/m
Explanation:
Well, generally when a Hooke's Law experiment is performed the plot is in fact Force vs Displacement, being the Force (in units of Newtons) in the Y-axis and the Displacement (in units of meters) in the X-axis.
In addition, if we add a linear fit the resultant equation will be the Line equation of the form:

Where
is the slope and
is the point where the line intersects the Y-axis.
So, if the equation is:

The slope of this line is
which is also the spring constant
.
Answer:
Static friction is what keeps the box from moving without being pushed, and it must be overcome with a sufficient opposing force before the box will move. Kinetic friction (also referred to as dynamic friction) is the force that resists the relative movement of the surfaces once they're in motionExplanation:
#if you need any questions answered within mins/secs hit me up and I got you
:)
Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.