Answer:
41 g
Explanation:
The equation of the reaction is;
Cr(NO3)3(aq)+Na3PO4(aq)=3NaNO3(s)+CrPO4(aq)
Number of moles of chromium nitrate = 37g/ 146.97 g/mol = 0.25 moles
1 mole of sodium phosphate reacts with 1 mole of chromium nitrate
x moles of sodium phosphate react as with 0.25 moles of chromium nitrate
x= 1 × 0.25/1
x= 0.25 moles
Mass of sodium phosphate = 0.25 moles × 163.94 g/mol
Mass of sodium phosphate = 41 g
Answer: Molarity of anions in the chemist's solution is 0.0104 M
Explanation:
Molarity : It is defined as the number of moles of solute present per liter of the solution.
Formula used :
where,
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get
Therefore, the molarity of solution will be
As 1 mole of gives 2 moles of
Thus moles of gives =
Thus the molarity of anions in the chemist's solution is 0.0104 M
Answer:
The answer is: 11759 Hz
Explanation:
Given: Chemical shift: δ = 211.5 ppm, Spectrometer frequency = 556 MHz = 556 × 10⁶ Hz
In NMR spectroscopy, the chemical shift (δ), expressed in ppm, of a given nucleus is given by the equation:
<u>Therefore, the signal is at 11759 Hz from the TMS.</u>
You can stop the burning of methane with water or carbon dioxide extinguishers but problems arise when you try to use this to stop the burning of the magnesium.
Explanation:
To burn magnesium (Mg) and methane (CH₄) you need to react them with oxygen:
2 Mg (s) + O₂ (g) → 2 MgO + heat
CH₄ (g) + 2 O₂ (g) → CO₂ (g) + 2 H₂O (g) + heat
However at that temperatures magnesium (Mg) is able to react with water (H₂O) and carbon dioxide (CO₂).
Mg (s) + 2 H₂O (l) → Mg(OH)₂ (s) + H₂ (g)
2 Mg (s) + CO₂ (g) → 2 MgO (s) + C (s)
So the safe option to stop the burning of the magnesium is to limit the oxygen in the air.
we have used the following notations:
(s) - solid
(g) - gas
(l) - liquid
Learn more about:
combustion reactions
brainly.com/question/13824679
#learnwithBrainly