Answer:
The glycosylation reaction or glycoside formation is an organic reaction in which the hemiacetal group of cyclists ketoses or aldoses turns into acetals, named glycosides. Reaction in the attached picture.
Explanation:
Carbohydrates can be found in an open-chain form or a cyclic form. For the second one, the carbonyl group of the aldehyde could react with the alcohol group of the molecule to form the cycle. As shown in the attached picture, the alcohol group of this cyclic form could react with an alcohol (like methanol) in acidic conditions to form an acetal. These compounds are stable at neutral and acidic conditions, but they hydrolyze at basic conditions. This reaction produces both acetals anomers (α and β) because the attack of the nucleophile (alcohol) could be from both sides. However, the most stable anomer will predominate.
Ionic bonds are formed when there is complete transfer of valence electrons between two atoms.
Electronegativity tells the trend of an atom to atract electrons.
You should search for the complete set of rules that indicate whether an ionic or covalent bond happens.
There are two relevant rules to state if whether an ionic bond will happen:
- When the difference of electronegativities between the two atoms is greater than 2.0, then the bond is ionic.
- When the difference is between 1.6 and 2.0, the bond is ionic if one of the elements is a metal.
You need to list the electronegativities of the five elements (there are tables with this information)
Element electronegativity
Cu: 1.9
H: 2.2
Cl 3.16
I: 2.66
S: 2.58
Differences:
Cu / S: 2.58 - 1.9 = 0.68
H / S: 2.58 - 2.2 = 0.38
Cl / S: 3.16 - 2.58 =0.58
I / S: 2.66 - 2.58 = 0.08
Those differences are too low to consider that the bond is ionic.
Then the answer is that none of those atoms forms an ionic bond with sulfur.
Answer: the answer is a netrual bond
Explanation: a netural bond happens when the number of electrons are the same as the number of protons.