Answer:

Explanation:
Given:
initial temperature of the lead bullet, 
latent heat of fusion of lead, 
melting point of lead, 
We have:
specific heat capacity of lead, 
<em>According to question the whole kinetic energy gets converted into heat which establishes the relation:</em>





Answer:
The series A test tube has some left amount of glucose left in it.
Explanation:
Let's assume that a fixed amount of glucose is synthesized, for the fixed quantity the bacteria produced in A and B be x and y respectively,
Therefore, the condition on x and y is, y > x as the no. of bacteria present in B is greater.
As a result B would require a greater amount of energy for its functioning, these energy would be derived from the already fixed amount of glucose present.
A test tube would also require the energy for its x number of bacteria, but it is less than that of B.
Therefore, there would be some unused glucose left in Test Tube Series A which has unused energy.
Acceleration is the rate of change of velocity, so can be calculated by:
a = v2 - v1 / t where v2 and v1 are the final and initial velocities of the object respectively and t is the time taken. Therefore the acceleration is:
a = 30 m/s - 20 m/s / 2.0 s = 10 m/s / 2.0 s = 5 m/(s^2)
Hope this helps!
Answer: 86.47 g of carbon-14 must have been present in the sample 11,430 years ago.
Explanation:
Half-life of sample of carbon -14= 5,730 days

Let the sample present 11,430 years(t) ago = 
Sample left till today ,N= 0.060 g

![ln[N]=ln[N]_o-\lambda t](https://tex.z-dn.net/?f=ln%5BN%5D%3Dln%5BN%5D_o-%5Clambda%20t)
![\log[0.060 g]=\log[N_o]-2.303\times 0.00012 day^{-1}\times 11,430 days](https://tex.z-dn.net/?f=%5Clog%5B0.060%20g%5D%3D%5Clog%5BN_o%5D-2.303%5Ctimes%200.00012%20day%5E%7B-1%7D%5Ctimes%2011%2C430%20days)
![\log[N_o]=1.9369](https://tex.z-dn.net/?f=%5Clog%5BN_o%5D%3D1.9369)

86.47 g of carbon-14 must have been present in the sample 11,430 years ago.
Wearing rubber or stay away from water or/ and a conductor