Answer:
v?
Explanation:
v = ∆s / ∆t
v =?
∆s = 236 - 218 = 18km
=t = 10: 30 - 10:15 = 15 minutes to hour 15/60 = 0.25h
v = 18 / 0.25
v = 72km / h
speed of 72km / h
Answer:
A.Gravity acts to pull the object down
D.The object’s inertia carries it forward.
E.The path of the object is curved.
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform motion along the horizontal direction, with constant horizontal speed
- A vertical motion with constant acceleration of g = 9.8 m/s^2 downward (acceleration due to gravity), due to the presence of the force of gravity, so the vertical velocity changes (increases in the downward direction)
As a result, the combined motion of the projectile has a curved trajectory (parabolic, more specifically). So the following options are correct:
A.Gravity acts to pull the object down --> gravity acts along the vertical direction
D.The object’s inertia carries it forward. --> there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal motion continues with constant speed
E.The path of the object is curved
Answer:
0.10013 atm
Explanation:
Applying Boyle's Law,
P'V' = PV................... Equation 1
Where P' = Initial pressure of air, V' = Initial volume of air, P = Final pressure of air, V = Final volume of air.
make P the subject of the equation
P = P'V'/V..................... Equation 2
Given: P' = 0.355 atm, V' 0.110 m³, V = 0.390 m³
Substitute into equation 2
P = 0.355(0.11)/0.39
P = 0.10013 atm.
Answer:
The magnitude of the electric field are
and 
Explanation:
Given that,
Radius of inner shell = 11.0 cm
Radius of outer shell = 14.0 cm
Charge on inner shell 
Charge on outer shell 
Suppose, at r = 11.5 cm and at r = 20.5 cm
We need to calculate the magnitude of the electric field at r = 11.5 cm
Using formula of electric field

Where, q = charge
k = constant
r = distance
Put the value into the formula


The total charge enclosed by a radial distance 20.5 cm
The total charge is

Put the value into the formula


We need to calculate the magnitude of the electric field at r = 20.5 cm
Using formula of electric field

Put the value into the formula


Hence, The magnitude of the electric field are
and 
Answer:
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Explanation:
The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.
The angle between the 2 forces and displacement is ∅ = 15°.
First we have to calculate the work done by the individual force and then we can calculate the total work.
The work done on a particle by a constant force F during a straight line displacement s is given by following formula:
W = F*s
W = F*s*cos∅
With ∅ = the angles between F and s
The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N
The total work done can be calculated as followed:
Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2
Wtotal = 2Fs*cos∅
Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°
Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>
<u />
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J