Answer:
t = 1.02 s
Explanation:
The computation of the time required is shown below:
The package speed for belt is
= 3 - 1
= 2 m/s
Moreover, the decelerative force would be acted on the block i.e u.m.g
So, the decelerative produced
= 0.2 × 9.81
= 1.962 m/s^2
And, final velocity = 0
v = u - at
here
V = 0 = final velocity
u = 2 m/s
so,
0 = 2 - 1.962 × t
t = 1.02 s
It depends on chemistry... A physical deformation to the Jell-O.
So, <u>the value of the work is approximately 84.65 J</u>.
<h2>Introduction</h2>
Hi ! Here I will help you to discuss the subject about work that caused by force in amount value of angle. Work is affected by the force and displacement.
- If related to the magnitude of the force, the amount of work will be proportional to the magnitude of the applied force. Thats mean, if the value of the force that applied on it is greater, then the value of the work will be greater.
- If related to the magnitude of shift, the amount of work will be proportional to the magnitude of shift of object. Thats mean, if the value of the shift on it is greater, then the value of the work will be greater.
<h3>Formula Used</h3>
The work done by a moving object can be expressed in the equation:
If the Angle Is Ignored

If the Angle Effect on Work

With the following condition:
- W = work that done by object (J)
- F = force that applied (N)
- s = shift or distance (m)
= angle of elevation (°)
<h3>Solution</h3>
We know that :
- F = force that applied =
N - s = shift or distance = 84.9 m
= angle of elevation = 45°
What was asked ?
- W = work that done by object = ... J
Step by step :






<h3>Conclusion</h3>
So, the value of the work is approximately 84.65 J.
Produce power through the circuit.