Answer:
The reaction is a double displacement reaction
Explanation:
Let us consider the reaction equation of the reaction between ammonium oxalate and lithium acetate.
(NH4)2C2O4(aq) +2 CH3COOLi(aq) -------> 2NH4CH3CO2(aq) + Li2C2O4(s)
This is a displacement reaction. A double displacement reaction is a type of reaction in which two reactants exchange their ions to form two new compounds. Double displacement reactions usually lead to the formation of a solid product which is also called a precipitate.
The general form of a Double displacement reaction is of the format:
AB + CD → AD + CB
Where A,B,C and D represents different ions respectively.
A double displacement reaction can also be referred to as salt metathesis reaction, double replacement reaction, exchange reaction, or a double decomposition reaction, although the latter term is more strictly used when one or more of the reactants does not dissolve in the solvent.
The concept of atomic masses we can find that the correct answer is:
c) 101
The atomic mass or mass number of an element is the sum of its protons plus the neutrons that are in the atomic nucleus, the electrons are not taken into account because they have a mass much lower than the masses of protons and neutrons.
In the table they indicate that there are 46 protons and 55 neutrons, therefore
M = #_ {protons} + #_ {neutrons}
M = 46 +55
M = 101
In conclusion using the concept of atomic masses we find that the correct answer is:
c) 101
Learn more about atomic mass here:
brainly.com/question/1317964
Answer: A) Inconclusive; you would not know which of the two variables caused the change.
Explanation:
When you set up an experiment, you must make sure that you control the variables such that only one independent variable changes at a time, while all the remainder conditions (the other independent variables) are controlled (fixed).
By observing (measuring) the dependent variable, while only one independent variable changes you can understandhow such independent variable explains (determines) the dependent variable, leading to a conclusion.
Conversely, if two or more independent variables change at a time, then there is no way that you can tell how the output (dependent variable) is related with one or other of the changes of the indipendent variables. You wolud not be able to discriminate (distinguish) the effect of one or other variable, making the experiment inconclusive
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
Answer : The correct option is, (B) 6 mole
Explanation :
Given moles of
= 6 moles
Given moles of
= 6 moles
First we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
From the given balanced reaction, we conclude that
As, 1 moles of
react with 2 moles of
So, 6 moles of
react with
moles of
From this we conclude that,
is an excess reagent and
is a limiting reagent because the given moles are less than the required moles and it limits the formation of product.
Thus, the number of moles of NaOH used up in the reaction = Required moles of NaOH - Given moles of NaOH
The number of moles of NaOH used up in the reaction = 12 - 6 = 6 moles
Therefore, the number of moles of NaOH used up in the reaction will be, 60 moles
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g