Answer:
if you tell me how much is needed and how much you have then i can answer it, but there is not enough information provided to answer to that question.
Explanation:
Answer:
A pie chart
Explanation:
A pie chart would be the ideal type of chart to create this visual aid. A pie chart is simpler visually and easily understood. It can show data as portions or percentages of a whole. Since what they want is to present the different gases found in Earth's atmosphere, they can show what percentage of the different gases make up the atmosphere.
It is simpler because the size of each portion or "slice" of the pie chart itself can reveal a lot about the data without even reading the numbers.
Chemical Reactions
Chemical changes take place when molecules or elements interact with other elements or molecules to form new chemical compounds. In order for a reaction to take place between molecules and or atoms, these molecules must come into contact with each other.
An example of a chemical reaction can be shown by the reaction of ammonia with hydrogen chloride to form ammonium chloride. This reaction is usually shown by a shorthand method called a chemical equation. The chemical equation for this reaction is...
NH3 + HCl � NH4Cl
This equation does not clearly show what has happened. In order for these two molecules to react, the pair of electrons on nitrogen must collide with the hydrogen atom of the hydrogen chloride on the side exactly opposite of the chlorine atom.
This collision must not only be precise as to the angle of the collision, it must have enough energy to break the bond between the hydrogen atom and the chlorine atom and form a new bond between the hydrogen atom and the nitrogen atom. Energy is released when a bond is formed. If all of these requirements are met, a reaction occurs forming a new compound.

The rate of a chemical reaction depends on all of the above factors. The reaction rate is measured by the change in concentration of one of the reactants or products over a measured period of time.
If some reaction condition is changed, the reaction rate will be changed.
Reaction coordinate diagrams are used to visualize the energy changes in chemical reactions. Some initial energy must be applied to any reaction in order to get the reaction started. This energy is called the energy of activation Ea.
If a reaction releases more energy than it takes to keep it going, it is called an exothermic reaction.

If a reaction requires a constant application of energy to keep it going, it is called an endothermic reaction.

A catalyst is something that, when added to a chemicalreaction, will increase the reaction rate without undergoing a permanent change. Although it appears that only Ea is lowered for a catalyzed reaction, the actual reaction pathway must change due to the involvement of the catalyst with the reactants. The energy released for the reaction remains the same. Catalysts are used extensively in biochemical reactions in order to decrease the energy demands for the animal or plant.

Matter can neither be gained nor lost in a chemical reaction. The number and type of atoms in the reactants must exactly equal the number and types of atoms in the products. The arrangement of the atoms will be different because new compounds are formed. Therefore, we must balance chemical equations with respect to the numbers of all of the atoms that are involved in the reaction.
Answer: extremely sensitive to environmental changes caused by habitat destruction, climate change, pollution
Explanation:
Across the world, amphibians have been disappearing at an unprecedented rate — faster than any other group of animals. Frogs, toads, and salamanders are extremely sensitive to environmental changes caused by habitat destruction, climate change, pollution, and invasive species.
Answer:
When ΔS > ΔH/ T, then the reaction will proceed forward
Explanation:
- The entity that determines the whether a reaction will occur on its own in the forward direction (Spontaneity or Feasibility) is Gibb's free energy.
- Gibb's free energy is the energy available to do work. It is denoted as 'G'. It cannot be easily measured. The change (ΔG) can only be measured. ΔG = ΔH - TΔS
when ΔG is positive, The reaction is not spontaneous (reaction will not occur on its own)
When ΔG is negative, The reaction is spontaneous (reaction will occur on its own)
When ΔG is zero, the reaction is in equilibrium
Option A and E are not correct. ΔH (Enthalpy) cannot determine spontaneity
Option C and D cannot alone determine spontaneity of reaction
For reaction to be spontaneous, TΔS > ΔH
Therefore, ΔS > ΔH/T