Explanation:
1) Wind energy is generated through a wind turbine. When wind passes through the blades of wind mill, the blades of the wind mill tend to rotate. Due to the spinning of the rotor across the turbine, the kinetic energy from the wind is converted to electrical energy
2) Incase of wind energy, the consumption gets higher when there is more wind and would be zero incase of no movement of blades.
Incase of hydroelectric power, the generation is rather stable and consumption depends on the usage of power from the consumers
Incase of gasoline generator, the generation is also stable subject to availability of gasoline and consumption again depends on the usage of power from the consumers
3) Pros of Hydroelectric power
Cost of electricity generation is less
Can produce green energy
Produce mass volume of electricity
Cons of Hydroelectric power
Requires massive initial investement
Can be installed on certain demographical area
Answer:
C: Viscosity, the resistance to flow that fluids exhibit
Explanation:
Did it on Edge :)
Answer:
Indicators for ineffective system engineering are as follows
1.Requirement trends
2.System definition change backlog trends
3.interface trends
4.Requirement validation trends
5.Requirement verification trends
6.Work product approval trends
7.Review action closure trends
8.Risk exposure trends
9.Risk handling trends
10.Technology maturity trends
11.Technical measurement trends
12.System engineering skills trends
13.Process compliance trends
Answer:
Do you mean 4m^3 and 3.0 tones?
Explanation:
solution:
Mass = m = 3.0 tones
- 1 ton = 1,000 kg
= 3.0 × 1,000
= 3,000 kg
volume = v = 4m^3
Required:
Mass density of oil = p = ?
We know that;

The answer is:
750kg / m^3
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases

where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air

2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw