Answer:
Momentum, p = 5 kg-m/s
Explanation:
The magnitude of the momentum of an object is the product of its mass m and speed v i.e.
p = m v
Mass, m = 3 kg
Velocity, v = 1.5 m/s
So, momentum of this object is given by :

p = 4.5 kg-m/s
or
p = 5 kg-m/s
So, the magnitude of momentum is 5 kg-m/s. Hence, this is the required solution.
a) 57.5 m/s
b) Yes
Explanation:
a)
According to Faraday-Newmann-Lenz's law, the electromotive force induced in the coil due to the change in magnetic flux through it is given by:

where
N is the number of turns in the coil
is the change in magnetic flux
is the time interval
The change in magnetic flux can be written as

where
A is the area of the coil
is the variation of the strength of the magnetic field
Re-writing the equation,

To make the bulb glowing, the induced emf must be:

And we also have:
N = 100


So we can find the maximum time required to induce this emf:

Since the length to cover in this time is
L = 4.0 cm = 0.04 m
The speed should be

b)
Yes: if the coil is moved at a speed of 57.7 m/s, then the potential difference induced in the bulb will be 1.5 V, which is enough to make the bulb glowing.
Answer:
Explanation:
the object will not move as the force exerted is not sufficient enough to overcome its force of friction
Answer:
Applying 200 N of force to the chair from the right
Explanation: