Answer:
you didn't ask a question so here is your explanation.
Explanation:
Q = mc∆T. Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/kg∙K) ∆ is a symbol meaning "the change in"
The activation energy Ea can be related to rate constant (k) at temperature (T) through the equation:
ln(k2/k1) = Ea/R[1/T1 - 1/T2]
where :
k1 is the rate constant at temperature T1
k2 is the rate constant at temperature T2
R = gas constant = 8.314 J/K-mol
Given data:
k1 = 0.543 s-1; T1 = 25 C = 25+273 = 298 K
k2 = 6.47 s-1; T = 47 C = 47+273 = 320 K
ln(6.47/0.543) = Ea/8.314 [1/298 - 1/320]
2.478 = 2.774 *10^-5 Ea
Ea = 0.8934*10^5 J = 89.3 kJ
Answer:
The answer to your question is: Initial temperature of copper = 67.1°C
Explanation:
Data
mass Copper = 248 g
volume Water = 390 ml
T1 water = 22.6°C
T2 = 39.9°C
T1 copper = ?
Specific heat water = 1 cal/g°C
Specific heat copper = 0.092 cal/g°C
Formula copper water
Heat is negative for copper because it releases heat
- mCp(T2 - T1) = mCp(T2 - T1)
- (248)(39.9 - T1) = 390 (1)((39.9 - 22.6) Substitution
-9895.2 + 248T1 = 390(17.3) Simplification
-9895.2 + 248T1 = 6747
248 T1 = 6747 + 9895.2
248 T1 = 16642.2
T1 = 16642.2 / 248
T1 = 67.1 °C Result
Answer:
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Explanation:
Equating coefficients, you get ...
aBa₃(PO₄)₂ +bSiO₂ ⇒ cP₄O₁₀ +dBaSiO₃
For Ba: 3a = d
For P: 2a = 4c
For O: 8a +2b = 10c +3d
For Si: b = d
__
Expressing everything in terms of b and c, we get ...
d = b
a = b/3 = 2c
From the second, b = 6c, so we have ...
a = 2c
b = 6c
c = c
d = 6c
And we can write the equation with c=1 as ...
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Answer:
Carbon Tetrachloride
Explanation:
1 Carbon atom, 4 chlorine atoms (hence "tetra" prefix)