1 m = 1 000 000 ym
converted other way we can say that:
1 ym =

m
Now, since we have ym^2 which is ym*ym which means:
1 ym^2 =

m
we have 1,5 ym^2 which means that answer is:
Answer:
T_finalmix = 59.5 [°C].
Explanation:
In order to solve this problem, a thermal balance must be performed, where the heat is transferred from water to methanol, at the end the temperature of the water and methanol must be equal once the thermal balance is achieved.

where:

mwater = mass of the water = 0.4 [kg]
Cp_water = specific heat of the water = 4180 [J/kg*°C]
T_waterinitial = initial temperature of the water = 85 [°C]
T_finalmix = final temperature of the mix [°C]

Now replacing:
![0.4*4180*(85-T_{final})=0.4*2450*(T_{final}-16)\\142120-1672*T_{final}=980*T_{final}-15680\\157800=2652*T_{final}\\T_{final}=59.5[C]](https://tex.z-dn.net/?f=0.4%2A4180%2A%2885-T_%7Bfinal%7D%29%3D0.4%2A2450%2A%28T_%7Bfinal%7D-16%29%5C%5C142120-1672%2AT_%7Bfinal%7D%3D980%2AT_%7Bfinal%7D-15680%5C%5C157800%3D2652%2AT_%7Bfinal%7D%5C%5CT_%7Bfinal%7D%3D59.5%5BC%5D)
Answer:
For the first situation, we first need to find the mass of the second train car.
In order to do that, we apply the conservation of the amount of movement:

and we have as a result:
m2 = 289.6875
For the second situation, also we will apply the conservation of the amount of movement:

and we have as a result:
V = 2.64 (it is moving to the right)
D. Neutrino
Neutrinos are particles that rarely interact with matter.