1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
13

A

Physics
1 answer:
asambeis [7]3 years ago
4 0

Answer:

22Volts

Explanation:

The pd at the terminal is known as the emf

Since there are Ten 2.2V cells

Terminal voltage = number of cells * pd of one cell

Terminal voltage = 10 * 2.2

Terminal voltage = 22V

Hence the pd at the battery terminals​ is 22Volts

You might be interested in
A machine can multiply forces for
Degger [83]

A greater effect.

Hope this helps!


-Payshence

4 0
4 years ago
Two long, parallel transmission lines, 40.0cm apart, carry 25.0-A and 73.0-A currents.A). Find all locations where the net magne
In-s [12.5K]

Answer:

a) If the currents are in the same direction, the magnetic field is zero at x = 0.298 m = 29.8 cm

That is, in between the wires, 29.8 cm from the 73.0 A wire and 10.2 cm from the 25.0 A wire.

b) If the currents are in opposite directions, the magnetic field is zero at x = 0.608 m = 60.8 cm

That is, along the positive x-axis, 60.8 cm from the 73.0 A wire and 20.8 cm from the 25.0 A wire.

Explanation:

The origin is at the 73.0 A wire and the 25.0 A wire is at x = 0.40 m

The magnetic field in a current carrying wire at a distance r from the wire is given by

B = (μ₀I/2πr)

μ₀ = magnetic constant = (4π × 10⁻⁷) H/m

a) If the currents are in the same direction, at what positions is the magnetic field equal to 0.

According to laws describing the direction.of magnetic fields, this position will be at some point between the two wires.

The magnetic field due to the 73.0 A wire points out of the book, at points along the positive x-axis while the magnetic field due to the 25.0 A wire points into the plane of the book, moving in the negative x-direction.

Hence,

For the 73.0 A wire, I₁ = 73.0 A, r₁ = x

For the 25.0 A wire, I₂ = 25.0 A, r₂ = (0.4 - x)

B = B₁ - B₂ = 0

(μ₀/2π) [(I₁/r₁) - (I₂/r₂)] = 0

(I₁/r₁) = (I₂/r₂)

(I₁/x) = [I₂/(0.4-x)]

(73/x) = [25/(0.4-x)]

73(0.4-x) = 25x

29.2 - 73x = 25x

73x + 25x = 29.2

98x = 29.2

x = (29.2/98) = 0.298 m

b) If the currents are in the opposite directions, at what positions is the magnetic field equal to 0?

According to laws describing the direction.of magnetic fields, this position will be at some point beyond the second wire (since we're initially concerned about the positive x-direction).

The magnetic field due to the 73.0 A wire points out of the book, at points along the positive x-axis while the magnetic field due to the 25.0 A wire (whose direction is now in the opposite direction to the current in the first wire) is also along the positive x-direction.

Hence,

For the 73.0 A wire, I₁ = 73.0 A, r₁ = x

For the 25.0 A wire, I₂ = 25.0 A, r₂ = (x - 0.4)

B = B₁ - B₂ = 0

(μ₀/2π) [(I₁/r₁) - (I₂/r₂)] = 0

(I₁/r₁) = (I₂/r₂)

(I₁/x) = [I₂/(x-0.4)]

(73/x) = [25/(x-0.4)]

73(x-0.4) = 25x

73x - 29.2 = 25x

73x - 25x = 29.2

48x = 29.2

x = (29.2/48) = 0.608 m

Hope this Helps!!!

5 0
4 years ago
The potential-energy function u(x) is zero in the interval 0≤x≤l and has the constant value u0 everywhere outside this interval.
VMariaS [17]
Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K): 
K = ½mv² 
v = √(2K/m) 
λ = h/(mv) 
= h/(m√(2K/m)) 
= h/√(2Km) 

So λ is proportional to 1/√K. 
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy: 
K = 6U₀ 

Outer the potential well the potential energy is U₀, so 
K = 5U₀ 
(because kinetic and potential energies add up to 6U₀) 

Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is: 
1/√(5U₀) : 1/√(6U₀) 
= √6 : √5
5 0
3 years ago
A dogsled team is shown pulling a man on a sled. Below the picture is a free body diagram with 4 force vectors. The first vector
Scorpion4ik [409]

Answer:

yes

Explanation:

its on edg.

8 0
3 years ago
Read 2 more answers
How much centripetal force is needed to make a body of mass 0.5kg to move in a circle of radius 50cm with speed 3ms^-1 ?​
scoundrel [369]

Centripetal force is given by F= mv²/r.

Given: m = 0.5 kg, v = 3 m/s, r = 0.5 m

Putting values,

F= mv²/r = 0.5× 3²/0.5 = 9 N

7 0
2 years ago
Read 2 more answers
Other questions:
  • What is the momentum of an object that is traveling at 3 m/s and has a mass of 5 kg?
    5·1 answer
  • How do electromagnetism and gravitation differ from the strong and weak nuclear forces?
    11·1 answer
  • Please helo me to 1st question<br>​
    12·1 answer
  • 12. One object has half the mass of another object. The first object also has half the ---.
    7·1 answer
  • Which type of bonding is found in all molecular substances
    5·1 answer
  • A pendulum is made of a small sphere of mass 0.250 kg attached to a lightweight string 1.20 m in length. As the pendulum swings
    14·1 answer
  • What is damping??????​
    5·2 answers
  • True or false the melting of ice cubes is a exothermic reaction
    14·1 answer
  • Where in space did the expansion of the universe begin?
    5·1 answer
  • 21. Explain why a passenger who is not wearing a safety belt will likely hit the windshield in a head-on collision. please answe
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!