Answer:
(a) The length of the pendulum on Earth is 36.8cm
(b) The length of the pendulum on Mars is 13.5cm
(c) Mass suspended from the spring on Earth is 0.37kg
(d) Mass suspended from the spring on Mars is 0.36kg
Explanation:
Period = 1.2s, free fall acceleration on Earth = 9.8m/s^2, free fall acceleration on Mars = 3.7m/s^2
( a) Length of pendulum on Earth = [( period ÷ 2π)^2] × acceleration = (1.2 ÷ 2×3.142)^2 × 9.8 = 0.0365×9.8 = 0.358m = 35.8cm
(b) Length of the pendulum on Mars = (1.2÷2×3.142)^2 × 3.7 = 0.0365×3.7 = 0.135cm = 13.5m
(c) Mass suspended from the spring on Earth = (force constant×length in meter) ÷ acceleration = (10×0.358) ÷ 9.8 = 0.37kg
(d) Mass suspended from the spring on Mars = (10×0.135)÷3.7 = 0.36kg
Answer: True
Explanation:
A photo detector that can respond to the entire rang of visible light can be design, it is true.
Photo detector is a device in an optical receiver which receives optical signals and convert it to electric signal. It is the key device position in front of the optical receiver.
<h3><u>Answer;</u></h3>
<em>too small to be seen with an optical microscope </em>
<h3><u>Explanation;</u></h3>
- <em><u>An electron microscope is a type of microscope that is used to observe very tiny specimens whose features can not be observed by other types of microscopes.</u></em> It uses a beam of electrons to generate an image of a given specimen whose features can be clearly observed and studied.
- <em><u>Electron microscope has very high resolution and magnification as compared to other optical microscope </u></em>hence can be observed in the study of micro-organisms such as viruses which would be difficult to study their features using optical microscopes.
Yes, all waves can be distorted, deflected, or changed
<span>Waves are a means by which energy travels. Many different particles move in waves. </span>All waves can be changed through interference with waves of similar wavelengths.
Most objects move at a constant speed because of friction and acceleration. The constant speed keeps them in place, and keeps a balance.