Energy of gamma rays is given by equation

here we know that
h = Planck's constant

now energy is given as


now by above equation



now for wavelength we can say



Please,,,,,,,,,,,,,,,,,,,
Airida [17]
Answer:
bsjzbzkzznnzkzkznzjzbzbzbzbzbzbzbzbznznenenenenenene
Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
Answer:
θ = Cos⁻¹[A.B/|A||B|]
A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result
Explanation:
We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:
A.B = |A||B| Cosθ
where,
A = 1st Non-Zero Vector
B = 2nd Non-Zero Vector
|A| = Magnitude of Vector A
|B| = Magnitude of Vector B
θ = Angle between vector A and B
Therefore,
Cos θ = A.B/|A||B|
<u>θ = Cos⁻¹[A.B/|A||B|]</u>
Hence, the correct answer will be:
<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>
Answer:
1110 N
Explanation:
First, find the acceleration.
Given:
Δx = 300 m
v₀ = 85.5 km/h = 23.75 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (23.75 m/s)² + 2a (300 m)
a = -0.94 m/s²
Find the force:
F = ma
F = (1180 kg) (-0.94 m/s²)
F = -1110 N
The magnitude of the force is 1110 N.