1)
HCl: hydrogen, chloride
3CO2: carbon, oxygen
2Na2SO4:sodium, sulphur, oxygen.
2)
-HCl: 1 hydrogen atom, 1 chlorine atom
-CO2: 1 carbon atom, 2 oxygen atoms
-Na2SO4: 2 sodium atoms, 1 sulphur atom, 4 oxygen atoms.
3)
-HCl: 2 atoms
-3CO2: 9 atoms
-2Na2SO4: 14 atoms.
Answer:
The value of change in internal energy of the gas = + 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.
Answer:
Explanation:
Parameters given:
Mass of Puck 1, m = 1 kg
Mass of Puck 2, M = 1 kg
Initial velocity of Puck 1, u = 20 m/s
Initial velocity of Puck 2, U = 0 m/s
Final velocity of Puck 1, v = 5 m/s
Since we are told that momentum is conserved, we apply the principle of conservation of momentum:
Total initial momentum of the system = Total final momentum of the system
mu + MU = mv + MV
(1 * 20) + (1 * 0) = (1 * 5) + (1 * V)
20 = 5 + V
V = 20 - 5 = 15 m/s
Puck 2 moves with a velocity of 15 m/s
smartphones break due to forces acting on the material.
force causes material to deform.
material is often brittle and cracks due to a limit on hardness / electricity in screens.
newton's 2nd law states
force = DV / DT
to help phones we must slow down change in momentum to reduce the force
thus we must use some form of damping in the form of a case .
the case is typically able to deform and rubber is elastic converting the kinetic energy to heat as it deforms instead of transferring it through the screen.
therefore the change in velocity occurs over a longer time. therefore the impulse decreases