Answer: the same direction I.e to the left.
Explanation:
The component perpendicular to the contact surface is such that will stop the relative motion and, in case of elastic collision like here, return the system to the same kinetic energy. So ball hitting immovable surface will have the same speed (magnitude of velocity) as before the collision.
There will also be parallel force caused by friction, but it has to be treated separately for two reasons:
The perpendicular force is limited to coefficient of friction times the normal force. If that is not enough to stop the ball, it will skid on the surface.The perpendicular force, and this depends on the specific geometry, does not pass through the centre of mass of the ball. Therefore it imparts a moment on the ball that causes it to start rotating. And once the ball is rotating so that the point of contact is stationary, there is no momentum to cause any friction force anymore and the friction force disappears and stops decelerating the ball.
So what happens is that the vertical component of the velocity will be reversed, while the horizontal component will be somewhat reduced with the corresponding amount of kinetic energy transferred to energy of rotation. The rotation will always eliminate the friction force before the horizontal component of velocity is zeroed, so the ball will always continue in the same direction, just a bit slower.
If you instead threw an elastic box (which could not start rotating freely) it could actually bounce back.
Answer:
Increase
Explanation:
The frequency of sound determines the sound. If the frequency is lower the pitch will be lower. If the frequency is higher the pitch will be higher. This is affected by the motion of the sound source because when a sound source is moving faster the frequency will become higher.
The field strength needed to produce a 24.0 V peak emf is 0.73T.
To find the answer, we need to know about the expression of emf.
What's the expression of peak emf produced in a rotating rectangular loops?
- The peak emf produced in a rotating loops= N×B×A×w
- N= no. of turns of the loop, B= magnetic field, A= area of loop and w= angular frequency
- So, B = emf/(N×A×w)
<h3>What's the magnetic field applied to the loop, when rectangular coil with 300 turns of dimensions 5.00 cm by 5.22 cm rotates at 400 rpm produce a 24.0 V peak emf?</h3>
- N= 300, A= 5cm × 5.22cm = 0.05m × 0.0522m = 0.00261 m²
- Emf= 24V, w= 2π×400 rpm= 2π×(400rps/60) = 42 rad/s
- Now, B= 24/(300×0.00261×42)
B= 24/(300×0.00261×42) = 0.73T
Thus, we can conclude that the magnetic field is 0.73T.
Learn more about the electromagnetic force here:
brainly.com/question/13745767
#SPJ4
The frictional force while the mass is sliding will be 46.2 N.
<h3>What is friction force?</h3>
Opposition forces on the surface cause heat loss during the motion of an object known as the friction force.
Given data:
m(mass)= 10.0-kg
Θ (Inclination angle)=25.0o
Coefficient of sliding friction,
=0.520
Coefficient of static friction,
The friction force, F=?
Resolve the force in the inclined plane;

Hence, the frictional force while the mass is sliding will be 46.2 N.
To know more about friction force refer to the link;
brainly.com/question/1714663
#SPJ1