The velocity is the integral of acceleration. If acceleration is 100 m/s^2 then velocity is:

So to know the velocity at any time, t, we just put t in seconds into this equation. To know at what time we get to a certain velocity, we set this equation equal to that velocity and solve for t:
Change in position (triangleV) divided by change in time (triangleT)
Answer:
The unbalanced force that caused the ball to stop was friction
Explanation:
As Newton's second law states, the acceleration of an object is proportional to the net force applied on the object:

therefore, in order to move at constant speed, an object should have a net force of zero (balanced forces) acting on it.
In this case, the ball slows down and eventually comes to a stop: it means that the ball is decelerating, so there are unbalanced forces (net force different from zero) acting on it. The unbalanced force acting on the ball is the friction: friction is a force against the motion of the object, which is due to the contact between the surface of the ball and the surface of the street, and this force is responsible for slowing down the ball.
I think this is the answer hope it helps
Light travelling in a vacuum is the fastest thing in the universe. The speed would be 2.99x10^8 m/s. The answer to this question is 'vacuum', where light can travel the fastest. I hope this helps you. You're welcome!