Answer:
40 km/h
Explanation:
First...
Look at the formula speed is equal to the distance over time or s = d/t.
Next...
Use the formula: 240/6.0
Finally...
Solve: 40
So the answer: 40 km/h
Graph A so answer B also why isn’t answer a with graph A and B with graph B etc like that’s just confusing lol
A) See ray diagram in attachment (-6.0 cm)
By looking at the ray diagram, we see that the image is located approximately at a distance of 6-7 cm from the lens. This can be confirmed by using the lens equation:

where
q is the distance of the image from the lens
f = -10 cm is the focal length (negative for a diverging lens)
p = 15 cm is the distance of the object from the lens
Solving for q,


B) The image is upright
As we see from the ray diagram, the image is upright. This is also confirmed by the magnification equation:

where
are the size of the image and of the object, respectively.
Since q < 0 and p > o, we have that
, which means that the image is upright.
C) The image is virtual
As we see from the ray diagram, the image is on the same side of the object with respect to the lens: so, it is virtual.
This is also confirmed by the sign of q in the lens equation: since q < 0, it means that the image is virtual
Since static friction is the minimum force required to just start the motion of a stationary object.
Here if we need to start an object from rest then we required F = 700 N
So for the first part of the above problem Force will be F = 700 N
Now if the box is already moving then we will have to use kinetic friction force between box and floor
now we can write the equation of net force as

here



now we will have

