Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!
Long term because if you leave something out to be weathered then it can’t be unweathered because of the drastic change of the object.
In descriptive investigations, we still haven't formed any hypothesis yet so we seek information by asking question.
It's not repeatable because repeating the questions over and over again without any clue about what we want to seek is completely waste of time.
Hope this helps xox :)
Answer: Mass Of CFC that needs to evaporate for the freezing of water = 328.24 g
Explanation: Heat gained by the CFC = Heat lost by water
Heat lost by water = Heat required to take water's temperature to 0°c + Heat required to freeze water at 0°c
Heat required to take water's temperature from 33°c to 0°c = mCΔT
m = 201g, C = 4.18 J/(gK), ΔT = 33
mCΔT = 201 × 4.18 × 33 = 27725.94 J
Heat required to freeze water at 0°c = mL
m = 201g, L = 334 J/g
mL = 201 × 334 = 67134 J
Heat gained by CFC to vaporize = mH = 27725.94 + 67134 = 94859.94 J
H = 289 J/g, m = ?
m × 289 = 94859.9
m = 328.24 g
QED!!
Any given experiment has numerous control variables, and it's important for a scientist to try to hold all variables constant except for the independent variable. If a control variable changes during an experiment, it may invalidate the correlation between the dependent and independent variables.
It’s copied and pasted from google so make sure to put it in your words :)