Wind speed and air temperature are used to calculate a windchill factor.
<u>Explanation:</u>
<u></u>
Wind-chill factor is the reduction of body temperature due to the passing flow of lower-temperature air.
The air temperature value is always higher than the wind chill numbers. the heat index will be used if the apparent temperature is higher than the air temperature.So, Wind speed and air temperature are mainly used to calculate a windchill factor.
There are many ways, the surface loses its heat through conduction, evaporation,radiation, and convection.The rate of convection depends on the difference in temperature between the surface and the fluid surrounding the surface and the velocity of that fluid with respect to the surface. The air around the warm surface will be heated, an insulating layer of warm air forms against the surface.The layer becomes a boundary between two. As the wind speed is high the surface cools down rapidly.
Answer:
t = 5.56 ms
Explanation:
Given:-
- The current carried in, Iin = 1.000002 C
- The current carried out, Iout = 1.00000 C
- The radius of sphere, r = 10 cm
Find:-
How long would it take for the sphere to increase in potential by 1000 V?
Solution:-
- The net charge held by the isolated conducting sphere after (t) seconds would be:
qnet = (Iin - Iout)*t
qnet = t*(1.000002 - 1.00000) = 0.000002*t
- The Volt potential on the surface of the conducting sphere according to Coulomb's Law derived result is given by:
V = k*qnet / r
Where, k = 8.99*10^9 ..... Coulomb's constant
qnet = V*r / k
t = 1000*0.1 / (8.99*10^9 * 0.000002)
t = 5.56 ms
Answer:
meter
The SI unit of distance and displacement is the meter [m].
Explanation:
have advancedd
Answer: 909 m/s
Explanation:
Given
Mass of the bullet, m1 = 0.05 kg
Mass of the wooden block, m2 = 5 kg
Final velocities of the block and bullet, v = 9 m/s
Initial velocity of the bullet v1 = ? m/s
From the question, we would notice that there is just an object (i.e the bullet) moving before the collision. Also, even after the collision between the bullet and wood, the bullet and the wood would move as one object. Thus, we would use the conservation of momentum to solve
m1v1 = (m1 + m2) v, on substituting, we have
0.05 * v1 = (0.05 + 5) * 9
0.05 * v1 = 5.05 * 9
0.05 * v1 = 45.45
v1 = 45.45 / 0.05
v1 = 909 m/s
Thus, the original velocity of the bullet was 909 m/s