Answer:
6 significant figure
Explanation:
The digits 111328 all are 6 figures with no figure being zero, neither zero after the other digits. In this case, all the numbers are significant and since they are only six numbers, then this is a six significant figure. In case we add another zero after digit 8, the zero is not significant but if added either infront of 8 or 2, the zero becomes significant.
We can use the formula of the moment of inertia given by:

Where:
r = Distance from the point about which the torque is being measured to the point where the force is applied
F = Force
I = Moment of inertia
α = Angular acceleration
So:

Answer:
12 rad/s²
Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Answer:
Time, size, distance, speed, direction, weight, volume, temperature, pressure, force, sound, light, energy—these are among the physical properties for which humans have developed accurate measures, without which we could not live our normal daily lives. Measurement permeates every aspect of human life.
Explanation:
A wavefront is the long edge that moves, for example, the crest or the trough. Each point on the wavefront emits a semicircular wave that moves at the propagation speed v. These are drawn at a time t later, so that they have moved a distance s = vt.