Explanation:
It is given that, An astronaut is in equilibrium when he is positioned 140 km from the center of asteroid X and 481 km from the center of asteroid Y, along the straight line joining the centers of the asteroids. We need to find the ratio of their masses.
As they are in equilibrium, the force of gravity due to each other is same. So,

So, the ratio of masses X/Y is 0.0847
Answer:
Rachel(2.5,0)
ball(6.5,4.7)
b.R=10.15m/s, 27.57deg
Explanation:
The reference angle of Rachel is 0
resolving rachel's speed to the horizontal, we have
Ux=2.5cos0
Ux=2.5m/s
resolving rachel's speed to the vertical we have,
Uy=2.5sin0
Uy=0
for the ball
resolving the speed to its horizontal component
Ux=8cos36
Ux=6.5m/s
Uy=8sin36
Uy=4.7m/s
Rachel(2.5,0)
ball(6.5,4.7)
To get the resultant of their speed
Add the horizontal speed of rachel to that of the ball to get the total horizontal speed
Add the vertical speed of rachel and the ball to get the total vertical speed component
TUx=2.5+6.5=9M/S
TUy=0+4.7=4.7m/s
R=
R=
R=
R=10.15m/s
the direction
tan
=TUy/TUx
tan
=4.7/9
=tan^-1(0.522)
=27.57deg
The correct statements are "Each orbit holds a fixed number of electrons" and "The n=1 orbit can only hold two electrons." According to the Bohr model, the maximum number of electrons that can occupy an orbit is given by
, where n is the number of the orbit. For instance, when n=1 it means
. This particular orbit can only hold up to two electrons. Even though the electrons can gain energy and move to higher orbits or electrons from higher orbits can lose energy and drop to the n=1 level, the energy level would not allow more electrons to enter the orbit once it is full. Again the octet rule, which states that atoms achieve stability by having 8 valence electrons, limits the maximum number of electrons that can be occupied by an orbit. The gain and loss of electrons is done to achieve the noble gas configuration and once that is reached no more electron can be added to an orbit
For many solids<span> dissolved in liquid water, the </span>solubility increases<span> with </span>temperature<span>. The </span>increase<span> in kinetic energy that comes with </span>higher temperatures<span> allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions.</span>
Answer:
Increase the amplitude
Explanation:
The energy conveyed by a wave is directly proportional to the square of its amplitude. Thus; E ∝ A²
This means that increasing the amplitude will lead to an increase in the energy.
Now, the amplitude of a wave is the height of a wave from it's highest point known as the peak, to the lowest point on the wave known as the trough whereas wavelength refers to the length of a wave from one peak to the next.
This means that increasing the amplitude has no effect on the wavelength.