I believe the answer is C- payload
Answer:
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Explanation:
Given:
Length of tube = 5 m (500 cm)
Mass of tube = 9
Suspended vertically from 150 cm and 50 cm.
Computation:
Force = Mass × gravity acceleration.
Force = 9.8 x 9
Force = 88.2 N
So,
Upward forces = Downward forces
D1 = 150 - 50 = 100 cm
D2 = 150 + 50 = 200 cm
And F1 = F2
F1 x D1 = F2 x D2
F1 x 100 = F2 x 200
F = 2F
Total force = Upward forces + Downward forces
3F = 88.2
F = 29.4 and 2F = 58.8 N
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Answer:
The third image
Explanation:
The one with the thumb pointing to the right
Answer:
Second order line appears at 43.33° Bragg angle.
Explanation:
When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.
The Bragg's diffraction equation is :
.....(1)
Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.
Given :
Wavelength, λ = 1.4 x 10⁻¹⁰ m
Bragg's angle, θ = 20°
Order of constructive interference, n =1
Substitute these value in equation (1).

d = 2.04 x 10⁻¹⁰ m
For second order constructive interference, let the Bragg's angle be θ₁.
Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).


<em>θ₁ </em>= 43.33°