The time of day the plants are watered is the independent variable. Keera did everything else the same for each plant.
Answer:
Explanation:
FIND THE SOLUTION IN THE ATTACHMENT
Answer:
510 g NO₂
General Formulas and Concepts:
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
- Reading the Periodic Table
- Writing Compounds
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
6.7 × 10²⁴ molecules NO₂ (Nitrogen dioxide)
<u>Step 2: Define conversions</u>
Avogadro's Number
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of NO₂ - 14.01 + 2(16.00) = 46.01 g/mol
<u>Step 3: Use Dimensional Analysis</u>
<u />
= 511.901 g NO₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
511.901 g NO₂ ≈ 510 g NO₂
Answer is: the ratio of the effusion rate is 1.59 : 1.
1) rate of effusion of carbon monoxide gas = 1/√M(CO).
rate of effusion of carbon monoxide gas = 1/√28.
rate of effusion of carbon monoxide gas = 0.189.
2) rate of effusion of chlorine = 1/√M(Cl₂).
rate of effusion of chlorine = 1/√70.9.
rate of effusion of chlorine = 0.119.
rate of effusion of carbon monoxide : rate of effusion of chlorine =
= 0.189 : 0.119 / ÷0.119.
rate of effusion of carbon monoxide : rate of effusion of chlorine = 1.59 : 1.
Answer:
Average atomic mass = 85.557 amu.
Explanation:
Given data:
Percent abundance of Rb-85 = 72.15%
Percent abundance of Rb-87 = 27.85%
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (72.15×85)+(27.85×87) /100
Average atomic mass = 6132.75 + 2422.95 / 100
Average atomic mass = 8555.7 / 100
Average atomic mass = 85.557 amu.