Answer:
V₂ = 4.34 L
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 3.50 L
Initial pressure = 150 Kpa (150/101.325 = 1.5 atm)
Initial temperature = 330 K
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1.5 atm × 3.50 L × 273 K / 330 K × 1 atm
V₂ = 1433.3 atm .L. K / 330 k.atm
V₂ = 4.34 L
Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
Answer: The answer is C
Explanation: Sound waves tend to spread farther the deeper the sound is, and the waves go lower then the second example, deeming it is louder.
Answer: D
Explanation:
This is the answer because everyone knows he discovered gravity and he conducted scientific experiments to prove them which he also used math for
Hope this helps