The H field is in units of amps/meter. It is sometimes called the auxiliary field. It describes the strength (or intensity) of a magnetic field. The B field is the magnetic flux density. It tells us how dense the field is. If you think about a magnetic field as a collection of magnetic field lines, the B field tells us how closely they are spaced together. These lines (flux linkages) are measured in a unit called a Weber (Wb). This is the analog to the electric charge, the Coulomb. Just like electric flux density (the D field, given by D=εE) is Coulombs/m², The B field is given by Wb/m², or Tesla. The B field is defined to be μH, in a similar way the D field is defined. Thus B is material dependent. If you expose a piece of iron (large μ) to an H field, the magnetic moments (atoms) inside will align in the field and amplify it. This is why we use iron cores in electromagnets and transformers.
So if you need to measure how much flux goes through a loop, you need the flux density times the area of the loop Φ=BA. The units work out like
Φ=[Wb/m²][m²]=[Wb], which is really just the amount of flux. The H field alone can't tell you this because without μ, we don't know the "number of field" lines that were caused in the material (even in vacuum) by that H field. And the flux cares about the number of lines, not the field intensity.
I'm way into magnetic fields, my PhD research is in this area so I could go on forever. I have included a picture that also shows M, the magnetization of a material along with H and B. M is like the polarization vector, P, of dielectric materials. If you need more info let me know but I'll leave you alone for now!
<h2>
Answer</h2>
The physical state of the elements depends upon the <u>attraction forces </u>and their <u>kinetic energy</u>.
<h2>
Explanation</h2>
The elements or substances are fixed with each other with the help of different chemical forces including ionic bonding, covalent bonding, H- bonding etc. The strength of these forces is also one of the factors that affect their physical natures. For example, covalent or ionic bonds are the strongest bonds than all other bonds and metals that contain these forces are mostly in solid form. The kinetic motion of electrons in the element also affects the physical state of the element and potential of bonding.
Answer:
The resistance is 
Explanation:
Given that,
Diameter of tube = 8.5 mm
Length = 8 cm
Resistivity = 2.5 m
We need to calculate the resistance
The resistance is equal to the product of the resistivity and length divided by the area of cross section .
In mathematical form,

Where,
=resistivity
l = length
A = area of cross section
Put the value into the formula



Hence, The resistance is 
The answer to your question is B- They both described the inner part otherwise known as the inner core.
The inner core is hotter than the surface of the sun. The inner core is made out of iron and nickel. The inner core is extremely hot and is the last layer. It is a solid because of all the pressure from the other layers putting there weight onto this layer.
Answer:
The oxidation number of a monatomic (composed of one atom) ion is the same as the charge of the ion. For example, the oxidation numbers of K+, Se2−, and Au3+ are +1, -2, and +3, respectively. The oxidation number of oxygen in most compounds is −2.
Explanation: