Answer:
2.51 Angstroms
Explanation:
For a particle in a one dimensional box, the energy level, En, is given by the expression:
En = n²π² ħ² / 2ma²
where n is the energy level, ħ² is Planck constant divided into 2π, m is the mass of the electron ( 9.1 x 10⁻³¹ Kg ), and a is the length of the one dimensional box.
We can calculate the change in energy, ΔE, from n = 2 to n= 3 since we know the wavelength of the transition ( ΔE = h c/λ ) and then substitute this value for the expresion of the ΔE for a particle in a box and solve for the length a.
λ = 207 nm x 1 x 10⁻⁹ m/nm = 2.07 x 10⁻⁷ m ( SI units )
ΔE = 6.626 x 10⁻³⁴ J·s x 3 x 10⁸ m/s / 2.07 x 10⁻⁷ m
ΔE = 9.60 x 10⁻¹⁹ J
ΔE(2⇒3) = ( 3 - 2 ) x π² x ( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
9.60 x 10⁻¹⁹ J = π² x( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
⇒ a = 2.51 x 10⁻¹⁰ m
Converting to Angstroms:
a = 2.51 x 10⁻¹⁰ m x 1 x 10¹⁰ Angstrom / m = 2.51 Angstroms
Answer:
Surface area
Explanation:
Surface area affect the rate at which solid and liquid reaction occur because when the surface area is increase, there will be increase in chemical reaction which is as a result of particles size of the solid. When .there is decrease in the particle size of the solid, the surface area will increase and this is as a result of increase in the energy that is required by the particle size.
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. ... As the car coasts down the hill, it moves faster and so it's kinetic energy increases and it's potential energy decreases. hope this helps
Explanation:
Answer:
The method used for measuring the small distance is by using the scales and the distance measured over long distance is by inch tape or measuring tape.
Explanation: