Answer:
the answer is at the BOTTOM OF THEIR QUESTION
Explanation:
IT IS CORRECT BTW
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.
Answer:
532 millimeters of mercury
Explanation:
In order to convert the pressure from atm to millimeters of mercury (mm Hg), we should remind the conversion factor between the two units:
1 atm = 760 mm Hg
Therefore, we can solve the problem by setting up the following proportion:

Solving for x, we find

To solve this problem we will apply the concepts related to the balance of Forces, the centripetal Force and Newton's second law.
I will also attach a free body diagram that allows a better understanding of the problem.
For there to be a balance between weight and normal strength, these two must be equivalent to the centripetal Force, therefore


Here,
m = Net mass
= Angular velocity
r = Radius
W = Weight
N = Normal Force

The net mass is equivalent to

Then,

Replacing we have then,

Solving to find the angular velocity we have,

Therefore the angular velocity is 0.309rad/s