1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
3 years ago
12

A 7.7 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest. The composite system moves with a

speed equal to one third the original speed of the 7.7 kg sphere. What is the mass of the second sphere
Physics
2 answers:
klemol [59]3 years ago
7 0

Answer:

15.4 kg.

Explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u' = V(m+m').................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.

Given: m = 7.7 kg, u' = 0 m/s (at rest)

Let: u = x m/s, and V = 1/3x m/s

Substitute into equation 1

7.7(x)+m'(0) = 1/3x(7.7+m')

7.7x = 1/3x(7.7+m')

7.7 = 1/3(7.7+m')

23.1 = 7.7+m'

m' = 23.1-7.7

m' = 15.4 kg.

Hence the mass of the second sphere = 15.4 kg

avanturin [10]3 years ago
6 0

Answer:

The mass of the second sphere is 15.4 kg

Explanation:

Given;

mass of the first sphere, m₁ = 7.7 kg

initial velocity of the second sphere, u₂ = 0

let mass of the second sphere =  m₂

let the initial velocity of the first sphere = u₁

final velocity of the composite system, v = ¹/₃ x u₁ = \frac{u_1}{3}

From the principle of conservation of linear momentum;

Total momentum before collision = Total momentum after collision

m₁u₁ + m₂u₂ = v(m₁ + m₂)

Substitute the given values;

7.7u_1 + 0=\frac{u_1}{3} (7.7+m_2)

Divide through by u₁

7.7 = ¹/₃(7.7 + m₂)

multiply both sides by 3

23.1 = 7.7 + m₂

m₂ = 23.1 - 7.7

m₂ = 15.4 kg

Therefore, the mass of the second sphere is 15.4 kg

You might be interested in
How can heat be transferred across empty space?
yawa3891 [41]
The answer is: Heat can<span> be </span>transmitted<span> though </span>empty space<span> by thermal radiation. Thermal radiation (often called infrared radiation) is a type electromagnetic radiation (or light). Radiation is a form of energy transport consisting of electromagnetic waves traveling at the speed of light.</span>
4 0
3 years ago
Read 2 more answers
A superconducting solenoid has 3300 turns per meter and can carry a maximum current of 4.1 ka. find the magnetic field strength
avanturin [10]
Hope this helps you.

7 0
3 years ago
Read 2 more answers
A watermelon is thrown down from a skyscraper with a speed of 7.0\,\dfrac{\text m}{\text s}7.0 s m ​ 7, point, 0, space, start f
Degger [83]

Answer:

y = 17,89 m

Explanation:

Let us fixate the reference point in top of the building, from where the watermelon is thrown down. We will assume also that the positive axis of our system points up. We describe the watermelon’s motion with the equation:

 v_y^2 =v_0^2 + 2ay

Clearing the equation so we isolate y we have that:

 y = (v_y^2 - v_0^2 )/2a

Making a substitution with the values from the statement we have:

y = ((20 m/s)^2 - (7 m/s)^2)/(2*9,81 m/s^2) = 17,89 m]

So, this skyscraper is about 17,89 m tall; which is not very tall for a skyscraper but who am I to judge.  17,89 m is also the displacement of the watermelon from the point it was thrown down.

I hope everything was clear with my explanation. If I can help with anything else, just let me know. Have an awesome day :D

7 0
3 years ago
Read 2 more answers
What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup
Fantom [35]

Answer:

3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²

- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²

Explanation:

Complete Question

3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?

- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.

The image of this setup attached to this question as obtained from online is attached to this solution.

Solution

3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.

Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²

The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²

- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.

I₂ = I₁ cos² θ

where

I₂ = intensity of light that passes through the second polarizer = ?

I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²

θ = angle between the major axis of the first and second polarizer = 30°

I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²

In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through

I₃ = I₂ cos² θ

I₃ = intensity of light that passes through the third/additional polarizer = ?

I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²

θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)

I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²

Hope this Helps!!!

5 0
3 years ago
Velocity of sound increases on a cloudy day. Why?
Nat2105 [25]
The density of air reduces as humidity and amount of water in the air increases. <span> The speed of sound is inversely proportional to the root of density, therefore sound travels faster on a cloudy day than on a dry day so, velocity of sound increase.</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • A wheel moves in the xy plane in such a way that the location of its center is given by the equations xo = 12t3 and yo = R = 2,
    6·1 answer
  • Mixing baking soda with vinegar is an example of an oxidation-reduction
    10·1 answer
  • Eric is creating a timeline of the formation of the solar system. Which sequence best describes the formation of the solar syste
    14·2 answers
  • Two forces are applied to a 17 kg box, as shown. The box is on a smooth surface. Which statement best describes the acceleration
    9·1 answer
  • Which of these objects would need the largest force to create an
    13·1 answer
  • A system of satellites, base stations, and receivers is called ___________.
    10·1 answer
  • What do you call a wave that is made up of electromagnetic feilds
    9·2 answers
  • HELP PLEASE ASAP
    9·1 answer
  • The law of inertia states that a moving object will:.
    7·1 answer
  • A company has created an ice cream that has zero calories, but it is made with chemicals that recently were proven to cause canc
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!