1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
3 years ago
12

A 7.7 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest. The composite system moves with a

speed equal to one third the original speed of the 7.7 kg sphere. What is the mass of the second sphere
Physics
2 answers:
klemol [59]3 years ago
7 0

Answer:

15.4 kg.

Explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u' = V(m+m').................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.

Given: m = 7.7 kg, u' = 0 m/s (at rest)

Let: u = x m/s, and V = 1/3x m/s

Substitute into equation 1

7.7(x)+m'(0) = 1/3x(7.7+m')

7.7x = 1/3x(7.7+m')

7.7 = 1/3(7.7+m')

23.1 = 7.7+m'

m' = 23.1-7.7

m' = 15.4 kg.

Hence the mass of the second sphere = 15.4 kg

avanturin [10]3 years ago
6 0

Answer:

The mass of the second sphere is 15.4 kg

Explanation:

Given;

mass of the first sphere, m₁ = 7.7 kg

initial velocity of the second sphere, u₂ = 0

let mass of the second sphere =  m₂

let the initial velocity of the first sphere = u₁

final velocity of the composite system, v = ¹/₃ x u₁ = \frac{u_1}{3}

From the principle of conservation of linear momentum;

Total momentum before collision = Total momentum after collision

m₁u₁ + m₂u₂ = v(m₁ + m₂)

Substitute the given values;

7.7u_1 + 0=\frac{u_1}{3} (7.7+m_2)

Divide through by u₁

7.7 = ¹/₃(7.7 + m₂)

multiply both sides by 3

23.1 = 7.7 + m₂

m₂ = 23.1 - 7.7

m₂ = 15.4 kg

Therefore, the mass of the second sphere is 15.4 kg

You might be interested in
Bru this was a challenge
vredina [299]

Answer:

what was a challenge,,

Explanation:

?

5 0
2 years ago
Read 2 more answers
When a mass of 0.350 kg is attached to a vertical spring and lowered slowly, the spring stretches 12.0 cm. The mass is now displ
Ray Of Light [21]

Answer:

period of oscillations is 0.695 second

Explanation:

given data

mass m = 0.350 kg

spring stretches x = 12 cm = 0.12 m

to find out

period of oscillations

solution

we know here that force

force = k × x   .........1

so force = mg =  0.35 (9.8)  = 3.43 N

3.43 = k × 0.12

k = 28.58 N/m

so period of oscillations is

period of oscillations = 2π × \sqrt{\frac{m}{k} }   ................2

put here value

period of oscillations = 2π × \sqrt{\frac{0.35}{28.58} }  

period of oscillations = 0.6953

so period of oscillations is 0.695 second

4 0
3 years ago
A rocket is fired at 100 m/s at an angle of 37, how many seconds did it take to get to the top?
Kobotan [32]

Answer:

6.14 s

Explanation:

The time the rocket takes to reach the top is only determined from its vertical motion.

The initial vertical velocity of the rocket is:

u_y = u sin \theta = (100)(sin 37^{\circ})=60.2 m/s

where

u = 100 m/s is the initial speed

\theta=37^{\circ} is the angle of launch

Now we can apply the suvat equation for an object in free-fall:

v_y = u_y +gt

where

v_y is the vertical velocity at time t

g=-9.8 m/s^2 is the acceleration of gravity

The rocket reaches the top when

v_y =0

So by substituting into the equation, we find the time t at which this happens:

t=-\frac{u_y}{g}=-\frac{60.2}{-9.8}=6.14 s

7 0
3 years ago
Which insurance would contradict the big bang theory
n200080 [17]
The Big Bang theory suggests that the universe is constantly expanding and that stars, galaxies and other entities are moving away from each other. If there were a galaxy moving closer to earth then that would contradict the Big Bang theory since the entities should be moving away from earth and from each other.
7 0
2 years ago
A solenoid of radius 2.0 mm contains 100 turns of wire uniformly distributed over a length of 5.0 cm. It is located in air and c
tankabanditka [31]

Answer:

The magnetic field strength inside the solenoid is 5.026\times10^{-3}\ T.

Explanation:

Given that,

Radius = 2.0 mm

Length = 5.0 cm

Current = 2.0 A

Number of turns = 100

(a). We need to calculate the magnetic field strength inside the solenoid

Using formula of the magnetic field strength

Using Ampere's Law

B=\dfrac{\mu_{0}NI}{l}

Where, N = Number of turns

I = current

l = length

Put the value into the formula

B=\dfrac{4\pi\times10^{-7}\times100\times2.0}{5.0\times10^{-2}}

B=0.005026=5.026\times10^{-3}\ T

(b). We draw the diagram

Hence, The magnetic field strength inside the solenoid is 5.026\times10^{-3}\ T.

4 0
3 years ago
Other questions:
  • The collision of two plates causes the formation of
    11·1 answer
  • Which vocabulary term is survival of the fittest
    7·1 answer
  • This is a ______________________reaction.
    9·2 answers
  • In what setting do all frequencies of electromagnetic waves travel at the same speed?
    13·1 answer
  • For the magnetic field at some random angle to the plane of the small coil, draw a picture showing only the small coil, a vector
    10·1 answer
  • Superman does an exhibition run at a track meet. When he runs the 200 m
    9·1 answer
  • An observer sitting on shore sees a canoe traveling 5.0 m/s east, and a sailboat traveling 15.0 m/s west. What is the velocity o
    12·1 answer
  • BI
    6·1 answer
  • A particular light source gives off light waves with a measured wavelength of
    5·1 answer
  • If the potential is given by v = xy - 3z-2, then the electric field has a y-component of?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!