Answer:
18.4 m
Explanation:
(a)
The known variables in this problem are:
u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)
t = 1.8 s is the duration of the fall
a = g = 9.8 m/s^2 is the acceleration due to gravity
(b)
The vertical distance covered by the life preserver is given by

If we substitute all the values listed in part (a), we find

The initial momentum of the system can be expressed as,

The final momentum of the system can be given as,

According to conservation of momentum,

Plug in the known expressions,

Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.
Plug in the known values,

Thus, the final velocity of second mass is 2.99 m/s.
Answer:
Option D
670 Kg.m/s
Explanation:
Initial momentum is given by mv=82*5.6=459.2 Kg.m/s (taking eastward as positive)
Final momentum is also mv but v being westward direction, we take it negative
Final momentum=82*-2.5= -205 Kg.m/s
Change in momentum=Final momentum-Initial momentum=-205-459.2=-664.2 Kg.m/s
Impulse=change in momentum=664.2 Kg.m/s rounded off as 670 Kg.m/s
1. Humidity cannot be used to predict rain.
2. I'm pretty sure it's weather but I'm not 100% sure. Maybe like 89% sure.
3. Tempurature doesn't affect humidity.
4. Not sure but I think its the 3rd one
Explanation:
The expression is :

A =[LT], B=[L²T⁻¹], C=[LT²]
Using dimensional of A, B and C in above formula. So,
![A=B^nC^m\\\\\ [LT]=[L^2T^{-1}]^n[LT^2}]^m\\\\\ [LT]=L^{2n}T^{-n}L^mT^{2m}\\\\\ [LT]=L^{2n+m}T^{2m-n}](https://tex.z-dn.net/?f=A%3DB%5EnC%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3D%5BL%5E2T%5E%7B-1%7D%5D%5En%5BLT%5E2%7D%5D%5Em%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%7DT%5E%7B-n%7DL%5EmT%5E%7B2m%7D%5C%5C%5C%5C%5C%20%5BLT%5D%3DL%5E%7B2n%2Bm%7DT%5E%7B2m-n%7D)
Comparing the powers both sides,
2n+m=1 ...(1)
2m-n=1 ...(2)
Now, solving equation (1) and (2) we get :

Hence, the correct option is (E).