1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ipatiy [6.2K]
3 years ago
5

Please help on this one?

Physics
1 answer:
Sati [7]3 years ago
4 0
I’m pretty sure it’s A
You might be interested in
An airplane is moving at 350 km/hr. If a bomb is
Molodets [167]

Answers:

a) -171.402 m/s

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final jeight

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb'e initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's fina velocity

Knowing this, let's begin with the answers:

<h3>b) Time</h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity</h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign ony indicates the direction is downwards

<h3>c) Range</h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
2 years ago
A high school has started a community service program. Under the program, students must participate in volunteer activities, suc
GrogVix [38]
I think the answer is reduction in tuition
3 0
2 years ago
Read 2 more answers
An incompressible fluid (water) is flowing through a pipe of diameter 20 cm with
sergey [27]

Answer:

115 kPa

Explanation:

Use Bernoulli equation:

P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂

Assuming no elevation change, h₁ = h₂.

P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²

Plugging in values:

(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²

P = 115,000 Pa

P = 115 kPa

3 0
3 years ago
The accepted value for the density of iron is 7.87 g/cm3. a student records the mass of a 20.00 cm3 block of iron as 153.8 grams
dangina [55]
The density of an object can be calculated using the formula Density = Mass/Volume.

Experimental Density:

Density = 153.8g / 20.00 cm^3
Density = 7.69g/cm^3

Percent error equation:

% Error = | Theoretical Value - Experimental Value|/Theoretical Value * 100
% Error = | 7.87g/cm^3 - 7.69g/cm^3|/7.87g/cm^3 * 100
% Error = 2.29%

Therefore a is the correct answer.
6 0
2 years ago
Objects with masses of 165 kg and a 465 kg are separated by 0.340 m. (a) Find the net gravitational force exerted by these objec
Dmitrij [34]

Answer:

(a) F_{net} = 4.19 x 10^{-5} N, and its direction is towards m_{2}.

(b) It must be placed inside a hollow shell.

Explanation:

Let, m_{1} = 165 kg, m_{2} = 465 kg, m_{3} = 60 kg, and the distance between m_{1} and m_{2} is 0.340 m.

(a) Since m_{3} is placed midway between m_{1} and m_{2}, then its distance to both masses is 0.170 m.

From the Newton's law of universal gravitation,

F = \frac{Gm_{1}m_{2}  }{r^{2} }

Where all variables have their usual meaning.

Then,

a. F_{net} = F_{23} - F_{13}

F_{13} = \frac{6.67*10^{-11}*165*60 }{(0.17)^{2} }

     = 2.25 x 10^{-5} N

F_{23} = \frac{6.67*10^{-11}*465*60 }{(0.17)^{2} }

     = 6.44 x 10^{-5} N

∴ F_{net} =  = 6.44 x 10^{-5} - 2.25 x 10^{-5}

              = 4.19 x 10^{-5} N

The net force exerted by the two masses on the 60 kg object is 4.19 x 10^{-5}  N.

(ii) /F_{net}/ = /F_{23}/ - /F_{13}/

              = 6.44 x 10^{-5} - 2.25 x 10^{-5}

              = 4.19 x 10^{-5} N

(iii) The direction of the net force is to the right i.e towards m_{2}.

(b) For the net force experienced by the 60 kg object to be zero, it must be placed inside a hollow shell.

7 0
3 years ago
Other questions:
  • 5) What is the net force caused by the moon acting on earth when the moon is 3.86x10^8 m away? The moon has a mass of 7.46x10^23
    9·1 answer
  • All life on earth exists in a region known as
    14·1 answer
  • Explain in detail what happens to the Earths surface after an earthquake due to the force of tension
    8·1 answer
  • A battery of e.m.f. 10 V is connected to resistance as shown in figure. The potential
    9·1 answer
  • What activity would require more impulse?
    7·1 answer
  • The tension in a string is 15 N, and its linear density is 0.85 kg/m. A wave on the string travels toward the -x direction; it h
    15·1 answer
  • Which option is an example of a physical property?
    13·1 answer
  • From eight weeks after conception until birth, the developing fertilized egg is called an
    8·2 answers
  • Define Velocity with an example​
    6·2 answers
  • An acrobat on skis starts from rest 50.0 m above the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!