1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
2 years ago
8

A wire of length 6cm makes an angle of 20° with a 3 mT

Physics
1 answer:
Crazy boy [7]2 years ago
5 0

Answer:

Approximately 7.3 \times 10^{-3}\; \rm A (approximately 7.3\; \rm mA) assuming that the magnetic field and the wire are both horizontal.

Explanation:

Let \theta denote the angle between the wire and the magnetic field.

Let B denote the magnitude of the magnetic field.

Let l denote the length of the wire.

Let I denote the current in this wire.

The magnetic force on the wire would be:

F = B \cdot l \cdot I \cdot \sin(\theta).

Because of the \sin(\theta) term, the magnetic force on the wire is maximized when the wire is perpendicular to the magnetic field (such that the angle between them is 90^\circ.)

In this question:

  • \theta = 20^\circ (or, equivalently, (\pi / 9) radians, if the calculator is in radian mode.)
  • B = 3\; \rm mT = 3 \times 10^{-3}\; \rm T.
  • l = 6\; \rm cm = 6 \times 10^{-2}\;\rm m.
  • F = 1.5\times 10^{-4}\; \rm N.

Rearrange the equation F = l \cdot I \cdot \sin(\theta) to find an expression for I, the current in this wire.

\begin{aligned} I &= \frac{F}{l \cdot \sin(\theta)} \\ &= \frac{3\times 10^{-3}\; \rm T}{6 \times 10^{-2}\; \rm m \times \sin \left(20^{\circ}\right)} \\ &\approx 7.3 \times 10^{-3}\; \rm A = 7.3 \; \rm mA\end{aligned}.

You might be interested in
The equation for the chemical reaction shown is not balanced. What number should replace the question mark to balance this equat
Fudgin [204]
The equation is balanced as it is.
7 0
3 years ago
How many electrons are in the outer energy level of an atom of carbon
xz_007 [3.2K]

Answer:

4 electrons

Explanation:

Carbon, is the group 14 element, with four electrons in its outer shell. Carbon always shares electrons to reach a complete valence shell, making bonds with other atoms.

8 0
3 years ago
A vector has a magnitude of 46.0 m and points in a direction 20.0° below the positive x-axis. A second vector, , has a magnitude
irina1246 [14]

Answer with Step-by -step explanation:

We are given that

b.\mid A\mid=46 m

\theta=20^{\circ} below the positive x-axis

Therefore, the angle made by vector A in counter clockwise direction when measure from positive x-axis=x=360-20=340^{\circ}

x-component of vector A=A_x=\mid A\mid cosx=46cos 340=46\times 0.94=43.24

y-Component of vector A=A_y=\mid A\mid sinx=46sin340=46(-0.34)=-15.64

Magnitude of vector B=86 m

The vector B makes angle with positive x- axis=x'=42^{\circ}

x-component of vector B=B_x=86cos42=63.64

y-Component of vector B=B_y=86sin42=57.62

Vector A=A_xi+A_yj=43.24i-15.64j

Vector B=B_xi+B_yj=63.64i+57.62j

Vector C=A+B

Substitute the values

C=43.24i-15.64j+63.64i+57.62j

C=106.88i+41.98j

c.Direction=\theta=tan^{-1}(\frac{y}{x})=tan^{-1}(\frac{41.98}{106.88})=21.5^{\circ}

The direction of the vector C=21.5 degree

6 0
3 years ago
Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm,
REY [17]

Answer:

a) 238U, 40K and 87Rb, b)   235U and to a lesser extent 40K , c)  he 235U,

d) possibility is 14C , e)this period would be ideal for 14C , f) 14C should be used since it is the one with the least average life time, even though the measurements must be very careful

Explanation:

One of the applications of radioactive decay is the dating of different systems.

To do this, the quantity of radioactive material in a meter is determined and with the average life time, the time of the sample is found.

Let's write the half-life times of the given materials

87Rb T ½ = 4.75 1010 years

147Sm T ½ = 1.06 1011 years

235U = 7,038 108 years

238U = 4.47 109 years

40K = 1,248 109 years

14C = 5,568 103 years

we already have the half-life of the different elements given

a) meteors. As these decomposed in the formation of the solar system, their life time is around 3 109 to 5 109 years, so it is necessary to look for elements that have a life time of this order, among the candidates we have 238U, 40K and 87Rb if these elements were at the moment of the formation of these meteors, there must still be rations in them, instead elements 14C already completely adequate

b) rock. The formation period is 4.20-108 years, therefore one of the most promising elements is 235U and to a lesser extent 40K since it is more abundant in rocks. The other elements with higher life times have not decayed and therefore will not give a true value and the 14C is completely decayed

c) volcanic ash. Formation time 6107 years, the only element that has the possibility of having a count is the 235U, the others have a life time so long that they have not decayed and the 14C is complete, unbent

d) scarp of an earthquake formation time 5 101 years, The only one that has any possibility is 14C even when it has declined very little, all the others, you have time to long that has not decayed

e) INCA excavation. The time of this civilization is about 10000 to 500 years (104 to 5 102 years), we see that this period would be ideal for 14C since it has some period of cementation, the others have not decayed

f) Tree in Blepharitis. 14C should be used since it is the one with the least average life time, even though the measurements must be very careful because of a period of disintegration. We have such a long time that they have not decayed

8 0
3 years ago
What does special relativity reveal about the speed of light relative to its source?
Vladimir [108]

Regardless of the source's mobility, light travels at the same speed.

<h3>What makes special relativity so crucial?</h3>

In the calculating and interpretation of high-velocity phenomena, as well as on our methods of thinking, Einstein's special relativity has had a significant influence on the area of physics. Today, we have a considerably better knowledge of space and time than we did at the start of the century.

<h3>Why is special relativity thus named?</h3>

Because it exclusively uses inertial frames to apply the concept of relativity, the theory is known as "special". General relativity, which Einstein created, applies the principle broadly, that is, to any frame, and this theory takes the gravitational forces into account.

learn more about relativity here

brainly.com/question/3489672

#SPJ4

5 0
2 years ago
Other questions:
  • Find an equation for the plane that passes through the point [1, 1, 8] and that has [-1, -6, 3] as normal vector.
    15·1 answer
  • A device that makes work easier by changing the size or direction of a force is called what?
    15·1 answer
  • John heats 1 kg of soup from 25 °C to 70 °C for 15 minutes by a heater. How long does the same heater take to heat 1.5 kg of the
    14·1 answer
  • The surface temperature of venus is so high because
    5·1 answer
  • A seed can be round when parents are crossed, scientists refer to the first generation of offspring as
    8·1 answer
  • Light waves are electromagnetic waves that travel at 3.00 Light waves are electromagnetic waves that travel 108 m/s. The eye is
    6·1 answer
  • In a mall, a shopper rides up an escalator between floors. At the top of the escalator, the shopper turns right and walks 6.40 m
    12·1 answer
  • Order the sequence of ideas that led to Marie Curie’s discovery of radioactive elements. Number the events in chronological orde
    8·1 answer
  • In any vector space au=bu implies a=b ? Trou or False​
    12·2 answers
  • a piston has an external pressure of 8.00 atmatm . how much work has been done in joules if the cylinder goes from a volume of 0
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!