Answer:
If they both remain constant they ain't moving, It states that the rate of change of velocity of an object is directly proportional to the force applied and takes place in the direction of the force. It is summarized by the equation
Explanation:
Answer:
a = 3.27 m/s²
T = 275 N
Explanation:
Given that:
Mass m₁ = 42.p0 kg
Mass m₂ = 21.0 kg
Consider both masses to be in a whole system, then:
The acceleration can be determined as:

Making acceleration the subject in the above formula;




a = 3.27 m/s²
in the string, the tension is calculated using the formula:



T = 274.68 N
T ≅ 275 N
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m
Friction between the ball and the floor is stealing some of the kinetic energy of the ball, and turning it into heat.