Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
The equivalent resistance when two resistors are connected in series is
the sum of their individual resistances.
The marking on the resistor that says "1000 W" is the rating that tells
how much power the resistor can safely dissipate, without overheating
or exploding. (The 'W' stands for 'Watts'.) It doesn't tell us anything about
their individual resistances. So we don't have enough information to calculate
their series equivalent.
Average speed = total distance / time ⇒ total distance = average speed * time
Average speed = 270 km / p hours
distance = d
hours = x
d = 270/p * x
20.4 years is 20.4/10.2 = 2 half-life cycles, which means a quarter of the starting mass or 15.2 g will remain after this time.
angular vel to tangential vel
v=r omega
v = 56 x 100/60 x 2 pi
v = 56x5/3x6
v=560m/s as estimate
100 revs, 5.00m