The average rate of change of distance over the time interval
3 ≤ t ≤ 6 represents the coin's average velocity over that interval.
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
The "pressure" of the electricity is electric potential. Electric potential is the amount of energy available to push each unit of charge through an electric circuit. The unit of electric potential is the volt. ... A volt is the force needed to move one amp through a conductor that has 1 ohm of resistance
Answer:
Explanation:
Energy stored in a capacitor
= 1/2 CV²
C is capacitance and V is potential of the capacitor .
When capacitor is charged to 24 V ,
E₁ = 1/2 x 2.4 x 24 x24 = 691.2 J
When it is charged to 12 volt
E₂ = 1/2 CV²
.5 X 2.4 X 12 X12
= 172.8 J