The answer is d1 to the second power because you divide to the second
Answer:
D. 
Step-by-step explanation:
The computation of the length of a diagonal (AC or BD) of the rectangle is shown below:
As we know that
The Diagonal length of AC is


Therefore correct option is D.
10. P- 30 ft , A- 8064
11. P- 18.8 ft, A- 44.8
I know it's only 2 questions but that's all I know sorry :( I hope that I at least helped a little though!
Answer:
the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm
Step-by-step explanation:
since the volume of a cylinder is
V= π*R²*L → L =V/ (π*R²)
the cost function is
Cost = cost of side material * side area + cost of top and bottom material * top and bottom area
C = a* 2*π*R*L + b* 2*π*R²
replacing the value of L
C = a* 2*π*R* V/ (π*R²) + b* 2*π*R² = a* 2*V/R + b* 2*π*R²
then the optimal radius for minimum cost can be found when the derivative of the cost with respect to the radius equals 0 , then
dC/dR = -2*a*V/R² + 4*π*b*R = 0
4*π*b*R = 2*a*V/R²
R³ = a*V/(2*π*b)
R= ∛( a*V/(2*π*b))
replacing values
R= ∛( a*V/(2*π*b)) = ∛(0.03$/cm² * 600 cm³ /(2*π* 0.05$/cm²) )= 3.85 cm
then
L =V/ (π*R²) = 600 cm³/(π*(3.85 cm)²) = 12.88 cm
therefore the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm