1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
7

✓ 1 N 3 4 5 6 Conv A rectangular field is 300 meters long and 250 meters wide. What is the area of the field in square kilometer

s? Do not round your answer. 1000 millimet 100 centimet 10 decimet 1 decame 2 km Х X 5. ? 1 hectomei 1 ​
Mathematics
1 answer:
garri49 [273]3 years ago
8 0

Answer:

75 km

Step-by-step explanation:

Area = Length × Width

= 300m and 250m

= 75000m

M to Km => ÷1000

= 75000m ÷ 1000

= 75 km #

You might be interested in
What is u^+6u-27 factoring
MissTica
U² + 6u - 27
u² + 9u - 3u - 27
(u - 3)(u + 9)
7 0
4 years ago
Simplify: cos2x-cos4 all over sin2x + sin 4x
GrogVix [38]

Answer:

\frac{\cos\left(2x\right)-\cos\left(4x\right)}{\sin\left(2x\right)+\sin\left(4x\right)}=\tan\left(x\right)

Step-by-step explanation:

\frac{\cos\left(2x\right)-\cos\left(4x\right)}{\sin\left(2x\right)+\sin\left(4x\right)}

Apply formula:

\cos\left(A\right)-\cos\left(B\right)=-2\cdot\sin\left(\frac{A+B}{2}\right)\cdot\sin\left(\frac{A-B}{2}\right) and

\sin\left(A\right)+\sin\left(B\right)=2\cdot\sin\left(\frac{A+B}{2}\right)\cdot\sin\left(\frac{A-B}{2}\right)

We get:

=\frac{-2\cdot\sin\left(\frac{2x+4x}{2}\right)\cdot\sin\left(\frac{2x-4x}{2}\right)}{2\cdot\sin\left(\frac{2x+4x}{2}\right)\cdot\cos\left(\frac{2x-4x}{2}\right)}

=\frac{-\sin\left(\frac{2x-4x}{2}\right)}{\cos\left(\frac{2x-4x}{2}\right)}

=\frac{-\sin\left(\frac{-2x}{2}\right)}{\cos\left(\frac{-2x}{2}\right)}

=\frac{-\sin\left(-x\right)}{\cos\left(-x\right)}

=\frac{-\cdot-\sin\left(x\right)}{\cos\left(x\right)}

=\frac{\sin\left(x\right)}{\cos\left(x\right)}

=\tan\left(x\right)

Hence final answer is

\frac{\cos\left(2x\right)-\cos\left(4x\right)}{\sin\left(2x\right)+\sin\left(4x\right)}=\tan\left(x\right)

6 0
3 years ago
Convert the measurement as indicated
Iteru [2.4K]

Answer:

36 ft

Step-by-step explanation:

<u>Given </u><u>:</u><u> </u>

  • 12 yards.

We need to convert it into feets. We know that ,

\implies 1 yard = 3 feet

\implies 12 yards = 12 * 3 ft

\implies 12 yards = 36 ft .

<u>Hence </u><u>the</u><u> </u><u>required</u><u> answer</u><u> is</u><u> </u><u>36</u><u> </u><u>feets </u><u>.</u>

5 0
3 years ago
Read 2 more answers
Find the volume of the solid.
dmitriy555 [2]

In Cartesian coordinates, the region (call it R) is the set

R = \left\{(x,y,z) ~:~ x\ge0 \text{ and } y\ge0 \text{ and } 2 \le z \le 4-x^2-y^2\right\}

In the plane z=2, we have

2 = 4 - x^2 - y^2 \implies x^2 + y^2 = 2 = \left(\sqrt2\right)^2

which is a circle with radius \sqrt2. Then we can better describe the solid by

R = \left\{(x,y,z) ~:~ 0 \le x \le \sqrt2 \text{ and } 0 \le y \le \sqrt{2 - x^2} \text{ and } 2 \le z \le 4 - x^2 - y^2 \right\}

so that the volume is

\displaystyle \iiint_R dV = \int_0^{\sqrt2} \int_0^{\sqrt{2-x^2}} \int_2^{4-x^2-y^2} dz \, dy \, dx

While doable, it's easier to compute the volume in cylindrical coordinates.

\begin{cases} x = r \cos(\theta) \\ y = r\sin(\theta) \\ z = \zeta \end{cases} \implies \begin{cases}x^2 + y^2 = r^2 \\ dV = r\,dr\,d\theta\,d\zeta\end{cases}

Then we can describe R in cylindrical coordinates by

R = \left\{(r,\theta,\zeta) ~:~ 0 \le r \le \sqrt2 \text{ and } 0 \le \theta \le\dfrac\pi2 \text{ and } 2 \le \zeta \le 4 - r^2\right\}

so that the volume is

\displaystyle \iiint_R dV = \int_0^{\pi/2} \int_0^{\sqrt2} \int_2^{4-r^2} r \, d\zeta \, dr \, d\theta \\\\ ~~~~~~~~ = \frac\pi2 \int_0^{\sqrt2} \int_2^{4-r^2} r \, d\zeta\,dr \\\\ ~~~~~~~~ = \frac\pi2 \int_0^{\sqrt2} r((4 - r^2) - 2) \, dr \\\\ ~~~~~~~~ = \frac\pi2 \int_0^{\sqrt2} (2r-r^3) \, dr \\\\ ~~~~~~~~ = \frac\pi2 \left(\left(\sqrt2\right)^2 - \frac{\left(\sqrt2\right)^4}4\right) = \boxed{\frac\pi2}

3 0
1 year ago
What are the measurements of the bases and the area of the trapezoid?
Luda [366]
The bases of the trapezoid are 24 m and 9.6 m.

The area of the trapezoid is 141.12 m².
7 0
3 years ago
Other questions:
  • b. Find the probability that two or fewer heads are observed in three tosses. (Round your answer to three decimal places.) c. Fi
    14·1 answer
  • There are 10,000 people at a concert.
    7·1 answer
  • PLS HELP ME WITH THESE, thank you!
    11·1 answer
  • How does 3, 7, 8, 17 equal 10
    7·1 answer
  • Approximately 59% of films are rated R. if 930 films were recently rated, how many were rated R?
    14·2 answers
  • During the first half of a game you scored eight points in the second half you may only three point baskets you finish the game
    7·1 answer
  • PLLLLLZZZZZ HEEEEEELP
    5·2 answers
  • Can someone pls help
    10·2 answers
  • Is this solved correctly ?
    7·1 answer
  • Please i need help !!!​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!