Molar mass NaCl = 58.5 g/mol
C = 158.0 g/L
Molarity = C / molar mass
M = 158.0 / 58.5
M = 2.7000 M
hope this helps!
#b
According to Le C ha.te llors principle of we increase concentration of reactants or products equilibrium shifts.
#c
- Rate of reaction also increases
#e
Stated in b
The correct answer is letter <span>C. mixture in which its components retain their identity. A heterogeneous mixture is a mixtures in which the component of the mixed are not uniform. You can see that there are localized regions that have different properties. The components have the capacity to retain their identity.</span>
Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.
Answer:
B. Particles of matter have spaces between them.
Explanation:
The particle nature model of matter is an model used to explain the properties and nature of matter. The statements of the particle nature model of matter are as follows :
1. Matter is made of small particles of atoms or molecules.
2. The particles of matter have space between them. The spaces between the particles are least in solids as they are closely packed together but are greatest in gases whose particles are far apart from each other.
3. The particles of matter are in constant motion at all times. Solids particles are not free to move due to strong molecular forces between the particles, but are constantly vibrating in their mean positions. Liquid particles free to move due to lesser molecular forces while gas molecules which have negligible intermolecular forces have the greatest ability to move.
4. The particles of matter are attracted to each other by intermolecular forces. These forces are greatest in solids and least in gases.
The correct option is B.