Answer:
A lunar eclipse can only happen during a full moon.
Hope I helped :)
Explanation:
Answer:
The final temperature of the system is 27.3°C.
Explanation:
Heat lost by aluminum = 3.99 × 0.91 × (100-T)
= 3.631 (100-T)
Heat gained by water = 10 × 4.184 × (T-21)
= 41.84 (T-21)
As,
Heat gained = Heat loss
or, 3.631(100-T) = 41.84(T-21)
or,363.1 - 3.631 T = 41.84 T - 878.64)
or, (41.84+ 3.631) T = 878.64 +363.1
or T= 
or, T = 27.3°C
Hence the final temperature is 27.3°C.
The radius of the cation is much smaller than the corresponding neutral atom.(b) The radius of an anion is much larger than the corresponding neutral atom.Explanation:The size of the atom or ion is inversely proportional to the nuclear charge experienced by the electrons.(a)The size of the cation is smaller than the size of the corresponding neutral atom. This is because after removal of an electron from the highest principle energy level the nuclear charge experienced by the valence electrons increases resulting in the decrease in size.(b)The size of an anion is larger than the size of the corresponding neutral atom. In an anion, an extra electron is added to the highest principle energy level but the effective nuclear charge pulling the electrons towards the nucleus is still same. The net effective nuclear charge experienced by the electrons present in the outermost shell decrease. Moreover, due to the added electron, the repulsion between the electrons also increases resulting in the increase in size
Make since? i hope this helps
When a sudden break or shift occurs the energy radiates it comes out of the water
I think the correct answer would be the third option. The correct name for the hydrocarbon described above would be 2-heptyne. It has a chemical formula written as CH3 - CH2 - CH2 - CH2 - C ≡ C - CH3. Counting the number of carbons, we have 7 carbon atoms so we use the prefix hepta-. Since it has a triple bond then it is an alkyne. So, it would be named as heptyne. The triple bond is located on the second carbon atom so we write 2 before the name to indicate the location of the triple bond. The name of the compound would be 2-heptyne.