Answer:
A
A fox and hawk can be both a predator and prey
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>
Answer:
w=255
Explanation:
The change in internal energy is given by the first law:
ΔE = Q - w
where ΔE is the change in internal energy of the system
q is the heat added to the system
w is the work done *by* the system on the surroundings
So, for the first phase of this process:
ΔE = Q - w
Q=160J
w=309J
ΔE = 160J - 309J = -149J
To bring the system back to its initial state after this, the internal energy must change by +149J (the system myst gain back the 149 J of energy it lost). We are told that the system loses 106 J of heat in returning to its initial state, so the work involved is given by:
ΔE = Q - w
+149J = -106J - w
255J = -w
w = -255J
They have 6 faces
12 edges
8 edges
Answer:
The knights collide 53.0 m from the starting point of sir George.
Explanation:
The equation for the position in a straight accelerated movement is as follows:
x = x0 + v0 t + 1/2 a t²
where
x = position at time t
x0 = initial position
v0 = initial speed
a = acceleration
t = time
The position of the two knights is the same when they collide. Since they start from rest, v0 = 0:
Sir George´s position:
xGeorge = 0 m + 0 m + 1/2 * 0.300 m/s² * t²
Considering the center of the reference system as Sir George´s initial position, the initial position of sir Alfred will be 88.0 m. The acceleration of sir Afred will be negative because he rides in opposite direction to sir George:
xAlfred = 88.0 m + 0 m - 1/2 * 0.200 m/s² * t²
When the knights collide:
xGeorge = x Alfred
1/2 * 0.300 m/s² * t² = 88.0 m - 1/2 * 0.200 m/s² * t²
0.150 m/s² * t² = 88.0 m - 0.100 m/s² * t²
0.150 m/s² * t² + 0.100 m/s² * t² = 88.0 m
0.250 m/s² * t² = 88.0 m
t² = 88.0 m / 0.250 m/s²
t = 18.8 s
At t = 18.8 s the position of sir George will be
x = 1/2 * 0.300 m/s² * (18.8 s)² = <u>53.0 m </u>