I think the correct answer from the choices listed above is option C. <span>The graph of a system of equations with the same slope and the same y-intercepts will never have no solutions. Rather, it has an infinite number of solutions since all points of the lines intersects.</span>
Sum of Interior Angles of any poligon, where n is the number of sides: =
(n-2) × 180°
---------------------
(7 - 2) * 180° =
5 * 180 =
900°
[d]
Answer:
Draw the number line like in the picture.
Step-by-step explanation:
√5 is about 2.236, meaning it's kind of close to 2.25.
√7 is about 2.646, meaning it's very close to 2.625.
25/3 ft/s is speed of the tip of his shadow moving when a man is 40 ft from the pole given that a street light is mounted at the top of a 15-ft-tall pole and the man is 6 ft tall who is walking away from the pole with a speed of 5 ft/s along a straight path. This can be obtained by considering this as a right angled triangle.
<h3>How fast is the tip of his shadow moving?</h3>
Let x be the length between man and the pole, y be the distance between the tip of the shadow and the pole.
Then y - x will be the length between the man and the tip of the shadow.
Since two triangles are similar, we can write

⇒15(y-x) = 6y
15 y - 15 x = 6y
9y = 15x
y = 15/9 x
y = 5/3 x
Differentiate both sides
dy/dt = 5/3 dx/dt
dy/dt is the speed of the tip of the shadow, dx/dt is the speed of the man.
Given that dx/dt = 5 ft/s
Thus dy/dt = (5/3)×5 ft/s
dy/dt = 25/3 ft/s
Hence 25/3 ft/s is speed of the tip of his shadow moving when a man is 40 ft from the pole given that a street light is mounted at the top of a 15-ft-tall pole and the man is 6 ft tall who is walking away from the pole with a speed of 5 ft/s along a straight path.
Learn more about similar triangles here:
brainly.com/question/8691470
#SPJ4
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>