Answer:
Answers can be seen below
Explanation:
First we must explain the essential when we clear equations, and that is that if the term we need to clear is accompanied by other terms that are being added up, then those terms go to the other side of the equation to subtract if those terms are subtracting, then they go to the other side to add, if those terms are found multiplying then they go to the other side of the equation to divide and if those other terms are found dividing then they go to the other side of the equation to multiply.
(Primero debemos explicar lo esencial cuando despejamos ecuaciones, y es que si el término que necesitamos despejar va acompañado de otros términos que se están sumando, entonces esos términos van al otro lado de la ecuación para restar si esos términos están restando, luego van al otro lado para sumar, si esos términos se encuentran multiplicando luego van al otro lado de la ecuación a dividir, y si esos términos se encuentran dividiendo, pasan al otro lado de la ecuación a multiplicar.)
1 )
; 
2)
; 
3)
; 
4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)
; 
15)

16)

For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.
Answer:
0.893 rad/s in the clockwise direction
Explanation:
From the law of conservation of angular momentum,
angular momentum before impact = angular momentum after impact
L₁ = L₂
L₁ = angular momentum of bullet = + 9 kgm²/s (it is positive since the bullet tends to rotate in a clockwise direction from left to right)
L₂ = angular momentum of cylinder and angular momentum of bullet after collision.
L₂ = (I₁ + I₂)ω where I₁ = rotational inertia of cylinder = 1/2MR² where M = mass of cylinder = 5 kg and R = radius of cylinder = 2 m, I₂ = rotational inertia of bullet about axis of cylinder after collision = mR² where m = mass of bullet = 0.02 kg and R = radius of cylinder = 2m and ω = angular velocity of system after collision
So,
L₁ = L₂
L₁ = (I₁ + I₂)ω
ω = L₁/(I₁ + I₂)
ω = L₁/(1/2MR² + mR²)
ω = L₁/(1/2M + m)R²
substituting the values of the variables into the equation, we have
ω = L₁/(1/2M + m)R²
ω = + 9 kgm²/s/(1/2 × 5 kg + 0.02 kg)(2 m)²
ω = + 9 kgm²/s/(2.5 kg + 0.02 kg)(4 m²)
ω = + 9 kgm²/s/(2.52 kg)(4 m²)
ω = +9 kgm²/s/10.08 kgm²
ω = + 0.893 rad/s
The angular velocity of the cylinder bullet system is 0.893 rad/s in the clockwise direction-since it is positive.
Answer:
1 question is- I believe 4. Melting Question 2 is Density
Explanation:
THOUGHT ABOUT IT!!!