In order to solve this problem it is necessary to apply the concepts related to intensity and specifically described in Malus's law.
Malus's law warns that

Where,
Angle between the analyzer axis and the polarization axis
Intensity of the light before passing through the polarizer
The intensity of the beam from the first polarizer is equal to the half of the initial intensity

Replacing with our the numerical values we get


Therefore the intensity of the light that emerges from the filter is 
The snail will go <span>0.18193752 miles </span>
Answer:
7.9
Explanation:
When we put the metal piece in the liquid (which is in the graduated cylinder), how much it goes up is equal to the volume of the piece we inserted.
So now we know that the volume of that piece of unknown metal is 7mL (which is the same as 7
).
Density is
.
So the density of that piece of metal is 
Which leaves us with a final density of 7.9
Answer:
A) the frequency and amplitude of the output voltag
Explanation:
Changing the speed of a synchronous generator changes both the output voltage (amplitude of the wave) and frequency as they tend to increase.
Changing the speed regulator will change the engine throttle setting to maintain the speed.
While the power, torque, current, fuel flow rate and torque angle will have decreased.
It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz