Answer:
0.139 rad
Explanation:
We use Snell's law
, where if
is the <em>refractive index</em> of the medium containing the <em>incident ray</em>,
would be the <em>incident angle</em>, and if
is the <em>refractive index</em> of the medium containing the <em>refracted ray</em>,
would be the <em>refraction angle</em>, which we want, so we do:

And finally:

We then insert our values:

Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K
Newton's first law of motion says something like "An object remains
in constant, uniform motion until acted on by an external force".
Constant uniform motion means no change in speed or direction.
If an object changes from rest to motion, that's definitely a change
of speed. So it doesn't remain in the state of constant uniform
motion (none) that it had when it was at rest, and that tells us
that an external force must have acted on it.
The derived unit for voltage is named volt.