|acceleration| = (change in speed) / (time for the change)
Change in the car's speed = (27 - 0) = 27 m/s
Time for the change = 10 sec
|acceleration| = (27 m/s) / (10 s) = 2.7 m/s² .
That's the magnitude of the car's acceleration.
We don't know anything about its direction.
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
The object is fixed relative to the motion you are trying to describe.
The car bounces off and moves in the opposite direction
Answer:
Quantum mechanics is a key hypothesis in material science that gives a portrayal of the actual properties of nature at the size of iotas and subatomic particles. It is the establishment of all quantum physical science including quantum science, quantum field hypothesis, quantum innovation, and quantum data science.
Explanation:
It is the greatest of issues, it is the littlest of issues. At present physicists have two separate rule books clarifying how nature functions. There is general relativity, which perfectly represents gravity and everything it overwhelms: circling planets, impacting worlds, the elements of the growing universe all in all. That is enormous. At that point there is quantum mechanics, which handles the other three powers – electromagnetism and the two atomic powers. Quantum hypothesis is very proficient at portraying what happens when a uranium molecule rots, or when singular particles of light hit a sun based cell. That is little.