Answer:
a) 15.37 mm
b)
c) 5.7186 W/m². K
d) 0.60 m
Explanation:
Given that :
The surface temperature = 130°C = ( 130+ 273 ) K = 473 K
suspended in quiescent air at 25°C = ( 25 + 273 ) K = 298 K

Atmospheric Pressure = 1 atm
The properties obtained from Table A - 4 include :
v = 
k = 0.03 W/m K
Pr = 0.700
η = 5
![Gr_x = 9.8[T_s - T \infty] \frac{x^3}{v^2}](https://tex.z-dn.net/?f=Gr_x%20%3D%209.8%5BT_s%20-%20T%20%5Cinfty%5D%20%5Cfrac%7Bx%5E3%7D%7Bv%5E2%7D)
![Gr_x = 9.8*\frac{1}{350}[130-25] \frac{x^3}{20.92*10^{-6}^2}](https://tex.z-dn.net/?f=Gr_x%20%3D%209.8%2A%5Cfrac%7B1%7D%7B350%7D%5B130-25%5D%20%5Cfrac%7Bx%5E3%7D%7B20.92%2A10%5E%7B-6%7D%5E2%7D)




Hence, the boundary layer thickness at a location 0.15 m measured from the lower edge is 15.37 mm
b) The maximum velocity in the boundary layer
with f'(n) = 0.275

![u= \frac{2*20.92*10^{-6}}{0.75} [6.718*10^9(0.15)^3]^{1/2} * 0.275](https://tex.z-dn.net/?f=u%3D%20%5Cfrac%7B2%2A20.92%2A10%5E%7B-6%7D%7D%7B0.75%7D%20%20%5B6.718%2A10%5E9%280.15%29%5E3%5D%5E%7B1%2F2%7D%20%2A%200.275)
u = 0.3659 m/s
the maximum velocity in the boundary layer at this location is 0.3659 m/s
the position in the boundary layer where the maximum occur is calculated as:

3.074 mm
c) Using the similarity solution result, , determine the heat transfer coefficient 0.15 m from the lower edge.
we know that:

= 
= 28.593
Making
the subject from the above formula:


= 5.7186 W/m². K
d) to determine the location on the plate that the boundary layer we become turbulent ; we have the following:

![x_c = [10^9/6.718*10^9(0.7)]^{1/3}](https://tex.z-dn.net/?f=x_c%20%3D%20%5B10%5E9%2F6.718%2A10%5E9%280.7%29%5D%5E%7B1%2F3%7D)
0.60 m