Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s
Answer: 3/2mg
Explanation:
Express the moment equation about point B
MB = (M K)B
-mg cosθ (L/6) = m[α(L/6)](L/6) – (1/12mL^2 )α
α = 3g/2L cosθ
express the force equation along n and t axes.
Ft = m (aG)t
mg cosθ – Bt = m [(3g/2L cos) (L/6)]
Bt = ¾ mg cosθ
Fn = m (aG)n
Bn -mgsinθ = m[ω^2 (L/6)]
Bn =1/6 mω^2 L + mgsinθ
Calculate the angular velocity of the rod
ω = √(3g/L sinθ)
when θ = 90°, calculate the values of Bt and Bn
Bt =3/4 mg cos90°
= 0
Bn =1/6m (3g/L)(L) + mg sin (9o°)
= 3/2mg
Hence, the reactive force at A is,
FA = √(02 +(3/2mg)^2
= 3/2 mg
The magnitude of the reactive force exerted on it by pin B when θ = 90° is 3/2mg
Answer:
Why is a metal work enclosure dangerous? Metalworkers are not only exposed to pollutants from metal cut ting and polishing procedures, but they are also exposed to metalworking fluids (MWF).
Energy efficiency simply means using less energy to perform the same task – that is, eliminating energy waste. ... There are enormous opportunities for efficiency improvements in every sector of the economy, whether it is buildings, transportation, industry, or energy generation.