Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
Answer:
7.615 kW
Explanation:
Solution in pen paper form in the attachment section
Answer:
4m/s
Explanation:
We know that power supplied by the motor should be equal to the rate at which energy is increased of the mass that is to be hoisted
Mathematically
\
We also know that Power = force x velocity ..................(i)
The force supplied by the motor should be equal to the weight (mg) of the block since we lift the against a force equal to weight of load
=> power = mg x Velocity........(ii)
While hoisting the load at at constant speed only the potential energy of the mass increases
Thus Potential energy = Mass x g x H...................(iii)
where
g = accleration due to gravity (9.81m/s2)
H = Height to which the load is hoisted
Equating equations (ii) and (iii) we get
m x g x v =
thus we get v = H/t
Applying values we get
v = 6/1.5 = 4m/s
Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars
Explanation :
A)
Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}
= 3780kJ
And 1 hour = 3600s
Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W
B)
At 15km/hour a 15km run takes 1 hour.
1 hour is 3600s and the runner burns 1050 joule per second.
Energy used in 1 hour = 3600 x 1050 J/s
= 3780000 J or 3.78MJ
C)
1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km
15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ
Finally,
1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ
This means that the runner needs 5320/1008 = 5.3 bars
Answer:
Coins weigh less on the Moon.
Explanation:
Gravity is only 1/6th as strong on the Moon than it is on Earth. Where a nickle is about 5 grams on Earth, it is less than 1 gram on the Moon. Gravity is affected by the size of the planet or moon. The Moon is much less massive than the Earth.